Advertisement

Wavelet Lifting over Information-Based EEG Graphs for Motor Imagery Data Classification

  • Javier Asensio-CuberoEmail author
  • John Q. Gan
  • Ramaswamy Palaniappan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8908)

Abstract

The imagination of limb movements offers an intuitive paradigm for the control of electronic devices via brain computer interfacing (BCI). The analysis of electroencephalographic (EEG) data related to motor imagery potentials has proved to be a difficult task. EEG readings are noisy, and the elicited patterns occur in different parts of the scalp, at different instants and at different frequencies. Wavelet transform has been widely used in the BCI field as it offers temporal and spectral capabilities, although it lacks spatial information. In this study we propose a tailored second generation wavelet to extract features from these three domains. This transform is applied over a graph representation of motor imaginary trials, which encodes temporal and spatial information. This graph is enhanced using per-subject knowledge in order to optimise the spatial relationships among the electrodes, and to improve the filter design. This method improves the performance of classifying different imaginary limb movements maintaining the low computational resources required by the lifting transform over graphs. By using an online dataset we were able to positively assess the feasibility of using the novel method in an online BCI context.

Keywords

Multiresolution analysis EEG data graph representation Motor imagery Brain computer interfacing Wavelet lifting Mutual information 

Notes

Acknowledgements

The first author would like to thank the EPSRC for funding his Ph.D. study via an EPSRC DTA award.

References

  1. 1.
    Asensio-Cubero, J., Gan, J.Q., Palaniappan, R.: Multiresolution analysis over simple graphs for brain computer interfaces. J. Neural Eng. 10(4), 046014 (2013)CrossRefGoogle Scholar
  2. 2.
    Blankertz, B., Muller, K.R., Krusienski, D.J., Schalk, G., Wolpaw, J.R., Schlogl, A., Pfurtscheller, G., Millan, J.R., Schroder, M., Birbaumer, N.: The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 153–159 (2006)CrossRefGoogle Scholar
  3. 3.
    Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2008)CrossRefGoogle Scholar
  4. 4.
    Bostanov, V.: BCI competition 2003-data sets ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram. IEEE Trans. Biomed. Eng. 51(6), 1057–1061 (2004)CrossRefGoogle Scholar
  5. 5.
    Brunner, C., Leeb, R., Muller-Putz, G.R., Schlogl, A., Pfurtscheller, G.: BCI competition 2008 - Graz data set A (2008). http://www.bbci.de/competition/iv/desc_2a.pdf
  6. 6.
    Carrera-Leon, O., Ramirez, J.M., Alarcon-Aquino, V., Baker, M., D’Croz-Baron, D., Gomez-Gil, P.: A motor imagery BCI experiment using wavelet analysis and spatial patterns feature extraction. In: 2012 Workshop on Engineering Applications (WEA), pp. 1–6 (2012)Google Scholar
  7. 7.
    Claypoole Jr., R.L., Baraniuk, R.G., Nowak, R.D.: Adaptive wavelet transforms via lifting. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, pp. 1513–1516 (1998)Google Scholar
  8. 8.
    Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)CrossRefGoogle Scholar
  9. 9.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)Google Scholar
  10. 10.
    Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (2006)Google Scholar
  11. 11.
    Dornhege, G.: Toward Brain-Computer Interfacing. The MIT Press, Cambridge (2007)Google Scholar
  12. 12.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRefzbMATHGoogle Scholar
  13. 13.
    Martinez-Enriquez, E., Ortega, A.: Lifting transforms on graphs for video coding. In: Data Compression Conference, pp. 73–82. IEEE (2011)Google Scholar
  14. 14.
    Narang, S.K., Ortega, A.: Lifting based wavelet transforms on graphs. In: Conference of Asia-Pacific Signal and Information Processing Association, pp. 441–444 (2009)Google Scholar
  15. 15.
    Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)CrossRefGoogle Scholar
  16. 16.
    Perseh, B., Sharafat, A.R.: An efficient P300-based bci using wavelet features and IBPSO-based channel selection. J. Med. Signals Sens. 2(3), 128 (2012)Google Scholar
  17. 17.
    Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)CrossRefGoogle Scholar
  18. 18.
    Qin, L., He, B.: A wavelet-based timefrequency analysis approach for classification of motor imagery for braincomputer interface applications. J. Neural Eng. 2, 65 (2005)CrossRefGoogle Scholar
  19. 19.
    Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8(4), 441–446 (2000)CrossRefGoogle Scholar
  20. 20.
    Schrder, P., Sweldens, W.: Spherical wavelets: Efficiently representing functions on the sphere. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 161–172. ACM (1995)Google Scholar
  21. 21.
    Shen, G., Ortega, A.: Comopact image representation using wavelet lifting along arbitrary trees. In: 15th IEEE International Conference on Image Processing, ICIP 2008, pp. 2808–2811. IEEE (2008)Google Scholar
  22. 22.
    Sweldens, W.: Wavelets and the lifting scheme: a 5 minute tour. Zeitschrift fur Angewandte Mathematik und Mechanik 76(2), 41–44 (1996)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Sweldens, W., Schrder, P.: Building your own wavelets at home. In: Klees, R., Haagmans, R. (eds.) Wavelets in the Geosciences, pp. 72–107. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. 25.
    Wu, Z., Yao, D.: Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs. J. Neural Eng. 5(1), 36 (2008)CrossRefGoogle Scholar
  26. 26.
    Yong, Y.P.A., Hurley, N.J., Silvestre, G.C.M.: Single-trial EEG classification for brain-computer interface using wavelet decomposition. In: European Signal Processing Conference (EUSIPCO) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Javier Asensio-Cubero
    • 1
    Email author
  • John Q. Gan
    • 1
  • Ramaswamy Palaniappan
    • 2
  1. 1.University of EssexColchester, EssexUK
  2. 2.University of WolverhamptonTelfordUK

Personalised recommendations