Skip to main content

Technology Development and Application Research of Maglev Control

  • Chapter
Maglev Trains

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

Suspension control, traction control, and operation control technologies are three key technologies of the electromagnetic suspension Maglev train [1]. Traction control and operational control in the wheel-rail transportation system have been fully studied and applied. Compared with the suspension control technology, the traction control and operation control technologies have relatively matured [2–4]. Since the Maglev suspension control technology is unique, it is still very necessary to study it in engineering applications [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang Wensen. Maglev technology development and automatic control [C]. Yichang: 22th Chinese control conference. 2003;8:27–30.

    Google Scholar 

  2. Sinha PK. Electronmagnetically suspension dynamics control [M]. London: Peter Peregrinus Ltd; 1987.

    Google Scholar 

  3. Najafi F, Nassar F. Comparison of high-speed rail and Maglev systems [J]. J Transp Eng. 1996;122(4):276–81.

    Article  Google Scholar 

  4. Yasuda Y, Fujino M, Tanaka M, et al. The first HSST maglev commercial train in Japan [C]. In: Proceedings of the 18th international conference on magnetically levitated systems and linear drives (MAGLEV 2004). 2004. p. 76–85.

    Google Scholar 

  5. Gerhard Schweitzer, Maslen EH. Magnetic bearings theory, design, and application to rotating machinery [M]. Berlin/Heidelberg: Springer; 2009.

    Google Scholar 

  6. Akira Chiba, Tadashi Fukao, Osamu Ichikawa, Masahide Oshima, Masatsugu Takemoto, Dorrell DG. Magnetic bearings, theory and applications [M]. Oxford: Elsevier Press; 2005.

    Google Scholar 

  7. Chang Wensen. The latest research trends of maglev trains [J]. Chin J Sci. 1993;33(6):34–6.

    Google Scholar 

  8. Wu Xiangming. Maglev trains [M]. Shanghai: Shanghai Science & Technology Press; 2003.

    Google Scholar 

  9. Liu Huaqing, Li Zhiye. German maglev trains [M]. Chengdu: University of Electronic Science & Technology Press; 1995. p. 17–30.

    Google Scholar 

  10. Wei Jichao. Maglev railway system and technology [M]. Beijing: China Science & Technology Press; 2003.

    Google Scholar 

  11. Yoshihide Yasuda, Masaaki Fujino, Masao Tanaka, et al. The first HSST maglev commercial train in Japan [C]. In: Maglev 2004 proceedings. 2004;1:76–85.

    Google Scholar 

  12. Ren Zhongyou, Wang Suyu, Wang Jiasu. Levitation force of multi-block YBaCuO high temperature superconductors over a permanent magnetic railway [J]. Cryog Supercond. 2000;28(2):17–21.

    Google Scholar 

  13. Noriyuki Shirakuni, Motoaki Terai, Katsutoshi Watanabe. The status of development and running tests of Superconducting Maglev [C]. In: Maglev 2006 proceedings. 2006. p. 4–9.

    Google Scholar 

  14. Sam Gurol, Bob Baldi. General atomics urban Maglev program status [C]. In: Maglev 2006 proceedings. 2006. p. 44–7.

    Google Scholar 

  15. Richard Thornton, Tracy Clark, Brian Perreault, Jim Wieler, Steve Levine. An M3 Maglev system for old dominion university [C]. In: Maglev 2008 proceedings. 2008;1:29–41.

    Google Scholar 

  16. Zhang Kunlun. Maglev system and its control [D]. PhD thesis. Chengdu: Southwest Jiaotong University; 1990.

    Google Scholar 

  17. Shun Zhang. The low medium speed train pilot system past pilot accreditation [J]. Res Urban Rail Transp. 2001;41(4):69–73.

    Google Scholar 

  18. Liu Zhiming. Low medium speed maglev train technology and domestic engineering development [J]. Rail Transp. 2006;46(4):46–50.

    Google Scholar 

  19. Hong Huajie. Vehicle-guideway coupled vibration of EMS type low speed maglev trains [D]. PhD thesis. Changsha: University of Defense Technology; 2005.

    Google Scholar 

  20. Shi Xiaohong, She Longhua, Chang Wensen. The bifurcation analysis of the EMS maglev vehicle-coupled-guideway system [J]. Chin J Theor Appl Mech. 2004;36(5):634–40.

    Google Scholar 

  21. Wang Hongpo. Vehicle-guideway dynamic interaction of the EMS low speed maglev vehicle [D]. Changsha: University of Defense Technology; 2007.

    Google Scholar 

  22. Zhao Chunfa. Maglev vehicle system dynamics [D]. PhD thesis. Chengdu: Southwest Jiaotong University; 2004.

    Google Scholar 

  23. Wanming Zhai, Zhao Chunfa, Cai Chengbiao. On the comparison of dynamic effects on bridges of maglev trains with high-speed wheel/rail trains [J]. J Traffic Transp Eng. 2001;1(1):7–12.

    Google Scholar 

  24. Zhou Youhe, Wu Jianjun, Zheng Xiaojing. Analysis of dynamic stability for magnetic levitation vehicles by Lyapunov characteristic number [J]. Acta Mech Sinica. 2000;32(1):42–51.

    Google Scholar 

  25. Teng YF, Teng NG, Kou XJ. Vibration analysis of Maglev three-span continuous guideway considering control system [J]. J Zhejiang Univ Sci A. 2008;9(1):8–14.

    Article  MATH  Google Scholar 

  26. Zhou DF, Li J, Hansen CH. Suppression of the stationary Maglev vehicle-bridge coupled resonance using a tuned mass damper [J]. J Vib Control. 2013;19(2):191–203.

    Article  Google Scholar 

  27. Zhou DF, Hansen CH, Li J. Suppression of Maglev vehicle-girder self-excited vibration using a virtual tuned mass damper [J]. J Sound Vib. 2011;330:883–901.

    Article  Google Scholar 

  28. Lee N, Han H, Lee J, et al. Maglev vehicle/guideway dynamic interaction based on vibrational experiment [C]. In: Proceedings of international conference on electrical machines and systems. 2007. p. 1999–2003.

    Google Scholar 

  29. Li Yungang, Chang Wensen. Cascade control of an EMS maglev vehicle’s levitation control system [J]. Acta Autom Sinica. 1999;25(2):247–51.

    Google Scholar 

  30. Cui Peng, Li Jie, Zhang Kun. Design of the suspension controller based on compensated feedback linearization [J]. J China Railw Soc. 2010;32(2):37–40.

    Google Scholar 

  31. Long Zhiqiang, Xue Song, He Guang, Xie Yunde. Fault-diagnosis for the accelerometer of maglev suspension system based on signal comparison [J]. Chin J Sci Instrum. 2011;32(12):2642–7.

    Google Scholar 

  32. Long Zhiqiang, Zhou Xiaobing, Yang Quanlin, Yin Liming. System study of permanent maglev train [J]. Electr Drive Locomot. 1996;3:8–11.

    Google Scholar 

  33. Li Hong, Zuo Peng, Liu Weizhi, Yuan Weici. Study on the 6 t single bogie maglev test car [J]. J China Railw Soc. 1999;21(2):26–9.

    Google Scholar 

  34. Shi Xiaohong, She Longhua, Chang Wensen. The bifurcation analysis of the EMS maglev vehicle-coupled-guideway system [J]. Acta Mech Sinica. 2004;36(5):634–40.

    Google Scholar 

  35. Long Zhiqiang, Chen Huixing, Chang Wensen. Fault tolerant control on single suspension module of maglev train with electromagnet failure [J]. Control Theory Appl. 2007;24(6):1033–7.

    Google Scholar 

  36. Long Zhiqiang, Gai Ying, Xu Xin. Comprehensive fault evaluation on maglev train based on estimation of distribution algorithms [J]. Control Decis. 2009;24(4):551–6.

    Google Scholar 

  37. Li Yun, Li Jie, Zhang Geng, Tian Wenjing. Disturbance decoupled fault diagnosis for sensor fault of maglev suspension system [J]. J Cent S Univ Technol. 2013;20:1545–51.

    Article  Google Scholar 

  38. Li Yun, He Guang, Li Jie. Nonlinear robust observer-based fault detection for networked suspension control system of Maglev train [J]. Math Probl Eng. 2013; Article ID 713560:1–7.

    Google Scholar 

  39. Xue Song, Long Zhiqiang, He Ning, Chang Wensen. A high precision position sensor design and its signal processing algorithm for Maglev train [J]. Sensors. 2012;12:5225–45.

    Article  Google Scholar 

  40. Zhang Zhizhou. Magnet design and signal processing technology study of permanent magnet electromagnetic low-speed maglev train’s suspension system [D]. PhD thesis. Changsha: University of Defense Technology; 2011.

    Google Scholar 

  41. Li Yungang, Cheng Hu, Long Zhiqiang. Stability analysis and controller design of hybrid EMS Maglev system [C]. In: The 8th international symposium on magnetic suspension technology. 2005. p. 74–8.

    Google Scholar 

  42. Chen Huixing. Design and control of magnets in permanent EMS maglev trains [D]. PhD thesis. Changsha: University of Defense Technology; 2009.

    Google Scholar 

  43. Li Lu, Wu Jun, Zhou Wenwu. Temperature drift compensation for gap sensor of high speed maglev train [J]. Chin J Sensors Actuators. 2008;21(1):70–3.

    Google Scholar 

  44. Hao Aming. Study on key technology of ordinary high speed maglev train guidance system [D]. PhD thesis. Changsha: University of Defense Technology; 2008.

    Google Scholar 

  45. Li Lu, Zhou Wenwu, Wu Jun. Research on HSMT levitation gap signal processing [J]. Chin J Sci Instrum. 2008;29(9):2001–4.

    Google Scholar 

  46. Guo Xiaozhou, Wang Ying, Wang Shixiong. Location and speed detection system for high-speed maglev vehicle [J]. J Southwest Jiaotong Univ. 2004;39(4):455–9.

    Google Scholar 

  47. Qian Cunyuan, Han Zhengzhi, Shao Derong, Xie Weida. Study of rotor position detection method for linear synchronous motor [J]. Proc CSEE. 2006;26(15):129–33.

    Google Scholar 

  48. Li Lu, Wu Jun, Luo Honghao. Research of joint-passing of speed and position detection system of maglev train [J]. J China Railw Soc. 2009;31(2):69–72.

    Google Scholar 

  49. Dai Chunhui, Long Zhiqiang, Xie Yunde, Xue Song. Research on the filtering algorithm in speed and position detection of maglev trains [J]. Sensors. 2011;11:7204–18.

    Article  Google Scholar 

  50. Hu Yefa. Maglev support technology and development [C]. In: The 5th domestic conference on Maglev bearings. Changsha: China Maglev and Gas Levitation Technical Committee; 2013.

    Google Scholar 

  51. Su Wenjun, Sun Yanhua, Yu Lie. Rotor periodic vibration suppression for controlled magnetic levitation system [J]. J Xi'an Jiaotong Univ. 2010;44(7):55–8.

    Google Scholar 

  52. Tian Yongsheng, Sun Yanhua, Yu Lie. Dynamical and experimental researches of active magnetic bearing rotor systems for high-speed PM machines [J]. Proc CSEE. 2012;32(9):116–23.

    Google Scholar 

  53. Fang Jiancheng. The research progress of high-precision and minimal vibrant magnetic inertial actuator [C]. In: The 5th Chinese symposium on magnetic bearing, Hunan, Changsha, 2013, August 26th-28th, Report of congress.

    Google Scholar 

  54. Wen Tong, Fang Jiancheng. A feedback linearization control for the nonlinear 5-DOF flywheel suspended by the permanent magnet biased hybrid magnetic bearings [J]. Acta Astronaut. 2012;79:131–9.

    Article  Google Scholar 

  55. Wang Xi, Fang Jiancheng, Fan Yahong, Liu Hu, Wang Chune, Wen Tong, Sun Jinji. Thimble permanent-magnet-biased radial magnetic bearing for magnetically-suspended-flywheel [J]. J Mech Eng. 2011;47(14):171–83.

    Article  Google Scholar 

  56. Wu Gang. Study on system design and control methods of hybrid magnetic bearing momentum flywheel [D]. PhD thesis. Changsha: University of Defense Technology; 2006.

    Google Scholar 

  57. Konstantinos Michail, Argyrios Zolotas, Roger Goodall, et al. Sensor optimization via H∞ applied to a MAGLEV suspension system [C]. In: International conference on control, automation and systems, Prague, Czech Republic, 2008, July 25–27.

    Google Scholar 

  58. Sung HK, Cho HJ, Yoo MH, et al. Fault tolerant control of electromagnetic levitation system [C]. In: The 18th magnetically levitated system and linear drives conference. China; 2004.

    Google Scholar 

  59. Long Zhiqiang, Xue Song, Chen Huixing. Passive fault tolerant control for suspension system of Maglev train based on LMI [J]. Comput Simul. 2008;25(2):265–8.

    Google Scholar 

  60. Zeng Xueming. On electric control system for active magnetic bearing [D]. PhD thesis. Nanjing: Nanjing University of Aeronautics and Astronautics; 2002.

    Google Scholar 

  61. Xu Longxiang, Xiao Jili. Study on the high-speed and high-precision processing maglev spindle system: advanced manufacturing technology [M]. Beijing: China Science & Technology Press; 1997. p. 660–3.

    Google Scholar 

  62. Zhang Jiansheng. Study and applications on digital control technology and power amplifier in magnetic levitation support system [D]. PhD thesis. Shanghai: Shanghai University; 2006.

    Google Scholar 

  63. Zhang Gang, Sun Chang, Zhang Jian, Zhang Hailong, Jiang Dede. Design and experimental verification of axial permanent magnetic bearings [J]. Bearing. 2012;11:5–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, Z., Long, Z., Li, X. (2015). Technology Development and Application Research of Maglev Control. In: Maglev Trains. Springer Tracts in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45673-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45673-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45672-9

  • Online ISBN: 978-3-662-45673-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics