Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 795 Accesses

Abstract

Ambipolar polymer FETs capable of both hole and electron transport exhibit simpler processing requirements in complementary-like circuits and potential application in organic light-emitting transistors. However, isoindigo-based polymers are usually p-type polymers with very low electron mobilities. In this chapter, electron-withdrawing groups are introduced on isoindigo to lower its LUMO level. High performance ambipolar FETs are demonstrated for both fluorinated and chlorinated isoindigo polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaumseil J, Sirringhaus H (2007) Electron and ambipolar transport in organic field-effect transistors. Chem Rev 107:1296–1323

    Article  Google Scholar 

  2. Yuen JD, Wudl F (2013) Strong acceptors in donor-acceptor polymers for high performance thin film transistors. Energy Environ Sci 6:392–406

    Article  Google Scholar 

  3. Fan J, Yuen JD, Wang M, Seifter J, Seo J-H, Mohebbi AR, Zakhidov D, Heeger A, Wudl F (2012) High-performance ambipolar transistors and inverters from an ultralow bandgap polymer. Adv Mater 24:2186–2190

    Article  Google Scholar 

  4. Chen Z, Lee MJ, Shahid Ashraf R, Gu Y, Albert-Seifried S, Meedom Nielsen M, Schroeder B, Anthopoulos TD, Heeney M, McCulloch I, Sirringhaus H (2012) High-performance ambipolar diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities. Adv Mater 24:647–652

    Article  Google Scholar 

  5. Shahid M, McCarthy-Ward T, Labram J, Rossbauer S, Domingo EB, Watkins SE, Stingelin N, Anthopoulos TD, Heeney M (2012) Low band gap selenophene-diketopyrrolopyrrole polymers exhibiting high and balanced ambipolar performance in bottom-gate transistors. Chem Sci 3:181–185

    Article  Google Scholar 

  6. Liu Y-Y, Song C-L, Zeng W-J, Zhou K-G, Shi Z-F, Ma C-B, Yang F, Zhang H-L, Gong X (2010) High and balanced hole and electron mobilities from ambipolar thin-film transistors based on nitrogen-containing oligoacences. J Am Chem Soc 132:16349–16351

    Article  Google Scholar 

  7. Usta H, Newman C, Chen Z, Facchetti A (2012) Dithienocoronenediimide-based copolymers as novel ambipolar semiconductors for organic thin-film transistors. Adv Mater 24:3678–3684

    Article  Google Scholar 

  8. Chen Z, Lee MJ, Shahid Ashraf R, Gu Y, Albert-Seifried S, Meedom Nielsen M, Schroeder B, Anthopoulos TD, Heeney M, McCulloch I, Sirringhaus H (2012) High-performance ambipolar diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities. Adv Mater 24:647–652

    Google Scholar 

  9. Lei T, Cao Y, Fan Y, Liu C-J, Yuan S-C, Pei J (2011) High-performance air-stable organic field-effect transistors: isoindigo-based conjugated polymers. J Am Chem Soc 133:6099–6101

    Article  Google Scholar 

  10. Lei T, Dou J-H, Pei J (2012) Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv Mater 24:6457–6461

    Article  Google Scholar 

  11. Wang E, Ma Z, Zhang Z, Vandewal K, Henriksson P, Inganäs O, Zhang F, Andersson MR (2011) An easily accessible isoindigo-based polymer for high-performance polymer solar cells. J Am Chem Soc 133:14244–14247

    Article  Google Scholar 

  12. Deng Y, Liu J, Wang J, Liu L, Li W, Tian H, Zhang X, Xie Z, Geng Y, Wang F (2014) Dithienocarbazole and isoindigo based amorphous low bandgap conjugated polymers for efficient polymer solar cells. Adv Mater 26:471–476

    Article  Google Scholar 

  13. Stalder R, Mei J, Subbiah J, Grand C, Estrada LA, So F, Reynolds JR (2011) N-type conjugated polyisoindigos. Macromolecules 44:6303–6310

    Article  Google Scholar 

  14. Lei T, Cao Y, Zhou X, Peng Y, Bian J, Pei J (2012) Systematic investigation of isoindigo-based polymeric field-effect transistors: design strategy and impact of polymer symmetry and backbone curvature. Chem Mater 24:1762–1770

    Article  Google Scholar 

  15. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dotz F, Kastler M, Facchetti A (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457:679–686

    Article  Google Scholar 

  16. Zhou E, Cong J, Wei Q, Tajima K, Yang C, Hashimoto K (2011) All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. Angew Chem Int Ed 50:2799–2803

    Article  Google Scholar 

  17. Zhan X, Tan Z, Domercq B, An Z, Zhang X, Barlow S, Li Y, Zhu D, Kippelen B, Marder SR (2007) A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J Am Chem Soc 129:7246–7247

    Google Scholar 

  18. Zhou H, Yang L, Stuart AC, Price SC, Liu S, You W (2011) Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7 % efficiency. Angew Chem Int Ed 50:2995–2998

    Article  Google Scholar 

  19. Chen H-Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photon 3:649–653

    Article  Google Scholar 

  20. Lei T, Dou J-H, Ma Z-J, Yao C-H, Liu C-J, Wang J-Y, Pei J (2012) Ambipolar polymer field-effect transistors based on fluorinated isoindigo: high performance and improved ambient stability. J Am Chem Soc 134:20025–20028

    Article  Google Scholar 

  21. Rowland RS, Taylor R (1996) Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii. J Phys Chem 100:7384–7391

    Article  Google Scholar 

  22. Chen Z, Zheng Y, Yan H, Facchetti A (2009) Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-gate n-channel organic transistors. J Am Chem Soc 131:8–9

    Article  Google Scholar 

  23. Kronemeijer AJ, Gili E, Shahid M, Rivnay J, Salleo A, Heeney M, Sirringhaus H (2012) A selenophene-based low-bandgap donor-acceptor polymer leading to fast ambipolar logic. Adv Mater 24:1558–1565

    Article  Google Scholar 

  24. Wen Y, Liu Y, Guo Y, Yu G, Hu W (2011) Experimental techniques for the fabrication and characterization of organic thin films for field-effect transistors. Chem Rev 111:3358–3406

    Article  Google Scholar 

  25. Katz HE, Lovinger AJ, Johnson J, Kloc C, Siegrist T, Li W, Lin YY, Dodabalapur A (2000) A soluble and air-stable organic semiconductor with high electron mobility. Nature 404:478–481

    Article  Google Scholar 

  26. Tang ML, Bao Z (2011) Halogenated materials as organic semiconductors. Chem Mater 23:446–455

    Article  Google Scholar 

  27. Tang ML, Oh JH, Reichardt AD, Bao Z (2009) Chlorination: a general route toward electron transport in organic semiconductors. J Am Chem Soc 131:3733–3740

    Article  Google Scholar 

  28. Gsänger M, Oh JH, Könemann M, Höffken HW, Krause A-M, Bao Z, Würthner F (2010) A crystal-engineered hydrogen-bonded octachloroperylene diimide with a twisted core: an n-channel organic semiconductor. Angew Chem Int Ed 49:740–743

    Article  Google Scholar 

  29. Lei T, Dou J-H, Ma Z-J, Liu C-J, Wang J-Y, Pei J (2013) Chlorination as a useful method to modulate conjugated polymers: balanced and ambient-stable ambipolar high-performance field-effect transistors and inverters based on chlorinated isoindigo polymers. Chem Sci 4:2447–2452

    Article  Google Scholar 

  30. Ha JS, Kim KH, Choi DH (2011) 2,5-Bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione-based donor–acceptor alternating copolymer bearing 5,5′-di(thiophen-2-yl)-2,2′-biselenophene exhibiting 1.5 cm2 V−1 s−1 hole mobility in thin-film transistors. J Am Chem Soc 133:10364–10367

    Article  Google Scholar 

  31. Kang I, An TK, Hong J-A, Yun H-J, Kim R, Chung DS, Park CE, Kim Y-H, Kwon S-K (2013) Effect of selenophene in a DPP copolymer incorporating a vinyl group for high-performance organic field-effect transistors. Adv Mater 25:524–528

    Google Scholar 

  32. Nielsen KT, Bechgaard K, Krebs FC (2005) Removal of palladium nanoparticles from polymer materials. Macromolecules 38:658–659

    Article  Google Scholar 

  33. Kang S-M, Leblebici Y (2003) CMOS digital integrated circuits: analysis and design, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  34. Yang Y, Wu R, Wang X, Xu X, Li Z, Li K, Peng Q (2014) Isoindigo fluorination to enhance photovoltaic performance of donor-acceptor conjugated copolymers. Chem Commun 50:439–441

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Lei .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lei, T. (2015). Ambipolar Polymer Field-Effect Transistors Based on Functionalized Isoindigo. In: Design, Synthesis, and Structure-Property Relationship Study of Polymer Field-Effect Transistors. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45667-5_3

Download citation

Publish with us

Policies and ethics