Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 809 Accesses

Abstract

Flexible and stretchable electronics may become mainstream technologies in the future. Among various materials, conjugated polymers provide many unique advantage such as low cost, solution processable, mechanically flexible, and compatible with heat-sensitive substrates. Polymer-based electronic materials are becoming one of the most active research areas in chemistry, material science, and electronic engineering. In the past few years, significant progress has been made in conjugated polymer field-effect transistors. However, further improvement of the device performance requires not only development of new polymer structures, but also deep understanding of the structure property relationships in conjugated polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodes G (2007) When small is different: some recent advances in concepts and applications of nanoscale phenomena. Adv Mater 19:639–655

    Article  Google Scholar 

  2. Vollath D (2008) Nanomaterials: an introduction to synthesis, properties and applications, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  3. Heeger AJ, Sariciftci NS, Namdas EB (2010) Semiconducting and metallic polymers. Oxford University Press, Oxford

    Google Scholar 

  4. Chiang CK, Fincher CR Jr, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39:1098–1101

    Article  Google Scholar 

  5. Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915

    Article  Google Scholar 

  6. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183–185

    Article  Google Scholar 

  7. Tsumura A, Koezuka H, Ando T (1986) Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl Phys Lett 49:1210–1212

    Article  Google Scholar 

  8. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791

    Article  Google Scholar 

  9. Carsten D, Vladimir D (2010) Polymer–fullerene bulk heterojunction solar cells. Rep Prog Phys 73:096401

    Article  Google Scholar 

  10. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon 6:591–595

    Google Scholar 

  11. You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C-C, Gao J, Li G, Yang Y (2013) A polymer tandem solar cell with 10.6 % power conversion efficiency. Nat Commun 4:1446

    Google Scholar 

  12. Ebisawa F, Kurokawa T, Nara S (1983) Electrical properties of polyacetylene/polysiloxane interface. J Appl Phys 54:3255–3259

    Article  Google Scholar 

  13. Minemawari H, Yamada T, Matsui H, Tsutsumi Jy, Haas S, Chiba R, Kumai R, Hasegawa T (2011) Inkjet printing of single-crystal films. Nature 475:364–367

    Article  Google Scholar 

  14. Gong X, Tong M, Xia Y, Cai W, Moon JS, Cao Y, Yu G, Shieh C-L, Nilsson B, Heeger AJ (2009) High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325:1665–1667

    Article  Google Scholar 

  15. Hide F, Díaz-García MA, Schwartz BJ, Andersson MR, Pei Q, Heeger AJ (1996) Semiconducting polymers: a new class of solid-state laser materials. Science 273:1833–1836

    Article  Google Scholar 

  16. Tessler N, Denton GJ, Friend RH (1996) Lasing from conjugated-polymer microcavities. Nature 382:695–697

    Article  Google Scholar 

  17. Williams-Harry M, Bhaskar A, Ramakrishna G, Goodson T, Imamura M, Mawatari A, Nakao K, Enozawa H, Nishinaga T, Iyoda M (2008) Giant thienylene-acetylene-ethylene macrocycles with large two-photon absorption cross section and semishape-persistence. J Am Chem Soc 130:3252–3253

    Article  Google Scholar 

  18. Liu B, Bazan GC (2005) Methods for strand-specific DNA detection with cationic conjugated polymers suitable for incorporation into DNA chips and microarrays. Proc Natl Acad Sci USA 102:589–593

    Article  Google Scholar 

  19. Pierret RF (1996) Semiconductor device fundamentals. Pearson Education, New Delhi

    Google Scholar 

  20. Reese C, Bao Z (2007) Organic single-crystal field-effect transistors. Mater Today 10:20–27

    Article  Google Scholar 

  21. Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev 104:4971–5004

    Article  Google Scholar 

  22. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952

    Google Scholar 

  23. Di C-A, Liu Y, Yu G, Zhu D (2009) Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc Chem Res 42:1573–1583

    Article  Google Scholar 

  24. Grozema FC, van Duijnen PT, Berlin YA, Ratner MA, Siebbeles LDA (2002) Intramolecular charge transport along isolated chains of conjugated polymers: effect of torsional disorder and polymerization defects. J Phys Chem B 106:7791–7795

    Article  Google Scholar 

  25. Prins P, Grozema FC, Schins JM, Patil S, Scherf U, Siebbeles LDA (2006) High intrachain hole mobility on molecular wires of ladder-type poly(p-phenylenes). Phys Rev Lett 96:146601

    Article  Google Scholar 

  26. Tsao HN, Cho DM, Park I, Hansen MR, Mavrinskiy A, Yoon DY, Graf R, Pisula W, Spiess HW, Müllen K (2011) Ultrahigh mobility in polymer field-effect transistors by design. J Am Chem Soc 133:2605–2612

    Article  Google Scholar 

  27. Tseng H-R, Ying L, Hsu BBY, Perez LA, Takacs CJ, Bazan GC, Heeger AJ (2012) High mobility field effect transistors based on macroscopically oriented regioregular copolymers. Nano Lett 12:6353–6357

    Article  Google Scholar 

  28. Niedzialek D, Lemaur V, Dudenko D, Shu J, Hansen MR, Andreasen JW, Pisula W, Müllen K, Cornil J, Beljonne D (2013) Probing the relation between charge transport and supramolecular organization down to angstrom resolution in a benzothiadiazole-cyclopentadithiophene copolymer. Adv Mater 25:1939–1947

    Article  Google Scholar 

  29. McCullough RD, Lowe RD (1992) Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). J Chem Soc Chem Commun 1:70–72

    Google Scholar 

  30. Marrocchi A, Lanari D, Facchetti A, Vaccaro L (2012) Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells. Energy Environ Sci 5:8457–8474

    Article  Google Scholar 

  31. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685–688

    Article  Google Scholar 

  32. Ong BS, Wu Y, Liu P, Gardner S (2004) High-performance semiconducting polythiophenes for organic thin-film transistors. J Am Chem Soc 126:3378–3379

    Article  Google Scholar 

  33. McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc ML, Kline RJ, McGehee MD, Toney MF (2006) Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater 5:328–333

    Article  Google Scholar 

  34. Li J, Bao Q, Li CM, Zhang W, Gong C, Chan-Park MB, Qin J, Ong BS (2010) Organic thin-film transistors processed from relatively nontoxic, environmentally friendlier solvents. Chem Mater 22:5747–5753

    Article  Google Scholar 

  35. Fong HH, Pozdin VA, Amassian A, Malliaras GG, Smilgies D-M, He M, Gasper S, Zhang F, Sorensen M (2008) Tetrathienoacene copolymers as high mobility, soluble organic semiconductors. J Am Chem Soc 130:13202–13203

    Article  Google Scholar 

  36. He M, Li J, Sorensen ML, Zhang F, Hancock RR, Fong HH, Pozdin VA, Smilgies D-M, Malliaras GG (2009) Alkylsubstituted thienothiophene semiconducting materials: structure–property relationships. J Am Chem Soc 131:11930–11938

    Article  Google Scholar 

  37. He M, Li J, Tandia A, Sorensen M, Zhang F, Fong HH, Pozdin VA, Smilgies D-M, Malliaras GG (2010) Importance of C 2 symmetry for the device performance of a newly synthesized family of fused-ring thiophenes. Chem Mater 22:2770–2779

    Article  Google Scholar 

  38. Osaka I, Zhang R, Sauvé Gv, Smilgies D-M, Kowalewski T, McCullough RD (2009) High-lamellar ordering and amorphous-like π-network in short-chain thiazolothiazole–thiophene copolymers lead to high mobilities. J Am Chem Soc 131:2521–2529

    Article  Google Scholar 

  39. Osaka I, Takimiya K, McCullough RD (2010) Benzobisthiazole-based semiconducting copolymers showing excellent environmental stability in high-humidity air. Adv Mater 22:4993–4997

    Article  Google Scholar 

  40. Osaka I, Abe T, Shinamura S, Miyazaki E, Takimiya K (2010) High-mobility semiconducting naphthodithiophene copolymers. J Am Chem Soc 132:5000–5001

    Article  Google Scholar 

  41. Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39:2354–2371

    Article  Google Scholar 

  42. Li J, Zhao Y, Tan HS, Guo Y, Di C-A, Yu G, Liu Y, Lin M, Lim SH, Zhou Y, Su H, Ong BS (2012) A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci Rep 2:754

    Google Scholar 

  43. Yuen JD, Wudl F (2013) Strong acceptors in donor-acceptor polymers for high performance thin film transistors. Energy Environ Sci 6:392–406

    Article  Google Scholar 

  44. Chen J, Cao Y (2009) Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res 42:1709–1718

    Article  Google Scholar 

  45. Zhang M, Tsao HN, Pisula W, Yang C, Mishra AK, Müllen K (2007) Field-effect transistors based on a benzothiadiazole–cyclopentadithiophene copolymer. J Am Chem Soc 129:3472–3473

    Article  Google Scholar 

  46. Tsao HN, Cho D, Andreasen JW, Rouhanipour A, Breiby DW, Pisula W, Müllen K (2009) The influence of morphology on high-performance polymer field-effect transistors. Adv Mater 21:209–212

    Article  Google Scholar 

  47. Wang S, Kappl M, Liebewirth I, Müller M, Kirchhoff K, Pisula W, Müllen K (2012) Organic field-effect transistors based on highly ordered single polymer fibers. Adv Mater 24:417–420

    Article  Google Scholar 

  48. Zhang W, Smith J, Hamilton R, Heeney M, Kirkpatrick J, Song K, Watkins SE, Anthopoulos T, McCulloch I (2009) Systematic improvement in charge carrier mobility of air stable triarylamine copolymers. J Am Chem Soc 131:10814–10815

    Article  Google Scholar 

  49. Zhang W, Smith J, Watkins SE, Gysel R, McGehee M, Salleo A, Kirkpatrick J, Ashraf S, Anthopoulos T, Heeney M, McCulloch I (2010) Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J Am Chem Soc 132:11437–11439

    Article  Google Scholar 

  50. Zhang X, Bronstein H, Kronemeijer AJ, Smith J, Kim Y, Kline RJ, Richter LJ, Anthopoulos TD, Sirringhaus H, Song K, Heeney M, Zhang W, McCulloch I, DeLongchamp DM (2013) Molecular origin of high field-effect mobility in an indacenodithiophene–benzothiadiazole copolymer. Nat Commun 4:2238

    Google Scholar 

  51. Li Y, Sonar P, Singh SP, Zeng W, Soh MS (2011) 3,6-di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione and bithiophene copolymer with rather disordered chain orientation showing high mobility in organic thin film transistors. J Mater Chem 21:10829–10835

    Article  Google Scholar 

  52. Shahid M, McCarthy-Ward T, Labram J, Rossbauer S, Domingo EB, Watkins SE, Stingelin N, Anthopoulos TD, Heeney M (2012) Low band gap selenophene-diketopyrrolopyrrole polymers exhibiting high and balanced ambipolar performance in bottom-gate transistors. Chem Sci 3:181–185

    Article  Google Scholar 

  53. Bronstein H, Chen Z, Ashraf RS, Zhang W, Du J, Durrant JR, Tuladhar PS, Song K, Watkins SE, Geerts Y, Wienk MM, Janssen RA, Anthopoulos T, Sirringhaus H, Heeney M, McCulloch I (2011) Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J Am Chem Soc 133:3272–3275

    Article  Google Scholar 

  54. Carsten B, Szarko JM, Lu L, Son HJ, He F, Botros YY, Chen LX, Yu L (2012) Mediating solar cell performance by controlling the internal dipole change in organic photovoltaic polymers. Macromolecules 45:6390–6395

    Article  Google Scholar 

  55. Bürgi L, Turbiez M, Pfeiffer R, Bienewald F, Kirner H-J, Winnewisser C (2008) High-mobility ambipolar near-infrared light-emitting polymer field-effect transistors. Adv Mater 20:2217–2224

    Article  Google Scholar 

  56. Li Y, Singh SP, Sonar P (2010) A high mobility p-type DPP-thieno[3,2-b]thiophene copolymer for organic thin-film transistors. Adv Mater 22:4862–4866

    Article  Google Scholar 

  57. Li Y, Sonar P, Singh SP, Soh MS, van Meurs M, Tan J (2011) Annealing-free high-mobility diketopyrrolopyrrole–quaterthiophene copolymer for solution-processed organic thin film transistors. J Am Chem Soc 133:2198–2204

    Article  Google Scholar 

  58. Ha JS, Kim KH, Choi DH (2011) 2,5-Bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione-based donor–acceptor alternating copolymer bearing 5,5′-di(thiophen-2-yl)-2,2′-biselenophene exhibiting 1.5 cm2 V−1 s−1 hole mobility in thin-film transistors. J Am Chem Soc 133:10364–10367

    Article  Google Scholar 

  59. Chen H, Guo Y, Yu G, Zhao Y, Zhang J, Gao D, Liu H, Liu Y (2012) Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv Mater 24:4618–4622

    Article  Google Scholar 

  60. Kang I, An TK, Hong J-A, Yun H-J, Kim R, Chung DS, Park CE, Kim Y-H, Kwon S-K (2013) Effect of selenophene in a DPP copolymer incorporating a vinyl group for high-performance organic field-effect transistors. Adv Mater 25:524–528

    Article  Google Scholar 

  61. Sonar P, Singh SP, Li Y, Soh MS, Dodabalapur A (2010) A low-bandgap diketopyrrolopyrrole-benzothiadiazole-based copolymer for high-mobility ambipolar organic thin-film transistors. Adv Mater 22:5409–5413

    Article  Google Scholar 

  62. Karikomi M, Kitamura C, Tanaka S, Yamashita Y (1995) New narrow-bandgap polymer composed of benzobis(1,2,5-thiadiazole) and thiophenes. J Am Chem Soc 117:6791–6792

    Article  Google Scholar 

  63. Fan J, Yuen JD, Cui W, Seifter J, Mohebbi AR, Wang M, Zhou H, Heeger A, Wudl F (2012) High-hole-mobility field-effect transistors based on co-benzobisthiadiazole-quaterthiophene. Adv Mater 24:6164–6168

    Article  Google Scholar 

  64. Fan J, Yuen JD, Wang M, Seifter J, Seo J-H, Mohebbi AR, Zakhidov D, Heeger A, Wudl F (2012) High-performance ambipolar transistors and inverters from an ultralow bandgap polymer. Adv Mater 24:2186–2190

    Article  Google Scholar 

  65. Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR (2011) Rylene and related diimides for organic electronics. Adv Mater 23:268–284

    Article  Google Scholar 

  66. Chen Z, Zheng Y, Yan H, Facchetti A (2009) Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-gate n-channel organic transistors. J Am Chem Soc 131:8–9

    Article  Google Scholar 

  67. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dotz F, Kastler M, Facchetti A (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457:679–686

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Lei .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lei, T. (2015). Introduction. In: Design, Synthesis, and Structure-Property Relationship Study of Polymer Field-Effect Transistors. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45667-5_1

Download citation

Publish with us

Policies and ethics