Skip to main content

Estimation of Dietary Copper (Cu) Requirement of Cynoglossus semilaevis Günther

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 332))

Abstract

To evaluate the dietary copper (Cu) requirement of Cynoglossus semilaevis, inorganic Cu (0, 2, 6, 17, and 50 mg kg−1) was added to the basal diet, providing actual dietary Cu (5.91, 8.23, 11.78, 24.16, and 56.34 mg kg−1). Each diet was fed to C. semilaevis Günther (initial body weight, 68 g) in triplicate groups for 8 weeks in a flow-through system. The results showed that weight gain rate (WGR), specific growth rate (SGR), feed conversion rate (FCR), and protein efficiency ratio (PER) in fish supplemented with 11.78 mg kg−1 were significantly higher than those in fish fed with the basal diet (P < 0.05), and no significant difference was observed in fish fed dietary Cu ranging from 11.78 to 56.34 mg kg−1 (P > 0.05). The activities of protease, amylase, lipase, copper–zinc superoxide dismutase (Cu–Zn SOD), and lysozyme first increased and then decreased with the increasing dietary Cu concentrations, and 11.78 mg kg−1 diet provided maximum activities. The optimum requirement of C. semilaevis for dietary Cu was estimated to be about 11–12 mg kg−1 diet using broken-line regression analysis, based on the growth and enzyme activities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berntssen MHG, Hylland K, Wendelaar BSE et al (1999) Toxic levels of dietary copper in Atlantic salmon (Salmo salar L.) parr. Aquat Toxicol 46:87–99

    Article  CAS  Google Scholar 

  2. Berntssen MHG, Lundebye AK, Maage A (1999) Effects of elevated dietary copper concentrations on growth, feed utilisation and nutritional status of Atlantic salmon (Salmo salar L.) fry. Aquaculture 174:167–181

    Article  CAS  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  4. Chen Z, Mayer LM, Weston DP et al (2002) Inhibition of digestive enzyme activities by copper in the guts of various marine benthic invertebrates. Environ Toxicol Chem 21(6):1243–1248

    Article  CAS  Google Scholar 

  5. Cheng ZG, Xu ZR, Lin YC (2004) Effect of high copper on growth and approach to mechanism in weanling pigs. Si Chuan Nong Ye Da Xue Xue Bao 25(6):62–64

    Google Scholar 

  6. Cowey CB (1976) Use of synthetic diets and biochemical criteria in the assessment of nutrient requirement of fish. J Fish Res Board Can 33:1040–1045

    Article  CAS  Google Scholar 

  7. De Schamphelaere KA, Forrez I, Dierckens K et al (2007) Chronic toxicity of dietary copper to Daphnia magna. Aquat Toxicol 81(4):409–418

    Article  Google Scholar 

  8. Dogru MI, Dogru AK, Gul M et al (2008) The effect of adrenomedullin on rats exposed to lead. J Appl Toxicol 28:140–146

    Article  CAS  Google Scholar 

  9. Ellis AE (1999) Immunity to bacteria in fish. Fish Shellfish Immunol 9:291–308

    Article  Google Scholar 

  10. Fattman CL, Schaefer LM, Oury TD (2003) Extracellular superoxide dismutase in biology and medicine. Free Radic Biol Med 35:236–256

    Article  CAS  Google Scholar 

  11. Gatlin DM III, Wilson RP (1986) Dietary copper requirement of fingerling channel catfish. Aquaculture 54:277–285

    Article  CAS  Google Scholar 

  12. Hoyle I, Shaw BJ, Handy RD (2007) Dietary copper exposure in the African walking catfish, Clarias gariepinus: Transient osmoregulatory disturbances and oxidative stress. Aquat Toxicol 83(1):62–72

    Article  CAS  Google Scholar 

  13. Kim SG, Kang JC (2004) Effect of dietary copper exposure on accumulation, growth and hematological parameters of the juvenile rockfish, Sebastes schlegeli. Marine Environ Res 58(1):65–82

    Article  CAS  Google Scholar 

  14. Lee MH, Shiau SY (2002) Dietary copper requirement of juvenile grass shrimp, Penaeus monodon, and effects on non-specific immune responses. Fish Shellfish Immunol 13(4):259–270

    Article  CAS  Google Scholar 

  15. Lin YH, Shie YY, Shiau SY (2008) Dietary copper requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 274:161–165

    Article  CAS  Google Scholar 

  16. Lin YH, Shih CC, Kent M et al (2010) Dietary copper requirement reevaluation for juvenile grouper, Epinephelus malabaricus, with an organic copper source. Aquaculture 310:173–177

    Article  CAS  Google Scholar 

  17. Lorentzen M, Maage A, Julshamn K (1998) Supplementing copper to a fish meal based diet fed to Atlantic salmon parr affects liver copper and selenium concentrations. Aquac Nutr 4(1):67–72

    Article  CAS  Google Scholar 

  18. Lundebye AK, Berntssen MHG, Bonga SEW et al (1999) Biochemical and physiological responses in Atlantic salmon (Salmo salar) following dietary exposure. Marine Pollut Bull 39(1–12):137–144

    Article  CAS  Google Scholar 

  19. Luo XG, Dove CR (1996) Effect of dietary copper and fat on nutrient utilization, digestive enzyme activities, and tissue mineral levels in weanling pigs. J Anim Sci 74:1888–1896

    CAS  Google Scholar 

  20. Lv JF (2002) Success in artificial reproduction of Cynoglossus semilaevis Günther. Nong Ye Zhi Shi 23:14

    Google Scholar 

  21. Minghetti M, Leaver MJ, Carpenè E et al (2008) Copper transporter 1, metallothionein and glutathione reductase genes are differentially expressed in tissues of sea bream (Sparus aurata) after exposure to dietary or waterborne copper. Comp Biochem Physiol C: Toxicol Pharmacol 147(4):450–459

    CAS  Google Scholar 

  22. Ogino C, Yang GY (1980) Requirements of carp and rainbow trout for dietary manganese and copper. Bull Jpn Soc Sci Fish 46:455–458

    Article  CAS  Google Scholar 

  23. Rougier F, Troutaud D, Ndoye A et al (1994) Non-specific immune response of Zebra fish, Brachydanio rerio (Hamilton-Buchanan) follow copper and zinc exposure. Fish Shellfish Immunol 4:115–127

    Article  Google Scholar 

  24. Shao XP, Liu WB, Lu KL et al (2012) Effects of tribasic copper chloride on growth, copper status, antioxidant activities, immune responses and intestinal microflora of blunt snout bream (Megalobrama amblycephala) fed practical diets. Aquaculture 338–341:154–159

    Article  Google Scholar 

  25. Shao XP, Liu WB, Xu WN et al (2010) Effects of dietary copper sources and levels on performance, copper status, plasma antioxidant activities and relative copper bioavailability in Carassius auratus gibelio. Aquaculture 308(1–2):60–65

    Article  CAS  Google Scholar 

  26. Shaw BJ, Handy RD (2006) Dietary copper exposure and recovery in Nile tilapia, Oreochromis niloticus. Aquat Toxicol 76(2):111–121

    Article  CAS  Google Scholar 

  27. Shiau SY, Ning YC (2003) Estimaion of dietary copper requirements for juvenile tilapia, Oreochromis niloticus × O. aureus. Anim Sci 77(2):287–292

    CAS  Google Scholar 

  28. Steinhart H, Wieninger-Rustemeyer R, Kirchgessner M (1981) Effect of Cu++ ions on the activity of trypsin on natural substance. Arch Tierernahr 31(2):119–125

    Article  CAS  Google Scholar 

  29. Tan XY, Luo Z, Liu X et al (2011) Dietary copper requirement of juvenile yellow catfish, Pelteobagrus fulvidraco. Aquac Nutr 17(2):170–176

    Article  CAS  Google Scholar 

  30. Trenzado C, Carmen HM, García-Gallego M et al (2006) Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss. A comparative study. Aquaculture 254:758–767

    Article  CAS  Google Scholar 

  31. Wang WF, Mai KS, Zhang WB et al (2009) Effects of dietary copper on survival, growth and immune response of juvenile abalone, Haliotis discus hannai Ino. Aquaculture 297(1–4):122–127

    Article  CAS  Google Scholar 

  32. Zhou W, Kornegay ET, van Laar H, Swinkels JW, Wong EA, Lindemann MD (1994) The role of feed consumption and feed efficiency in copper-stimulated growth. J Anim Sci 72(9):2385–2394

    CAS  Google Scholar 

Download references

Acknowledgments

The financial support provided by National “Twelfth Five-year” Science and Technology Support Project (Grant No. 2011BAD13B07), National Spark Plan Project (2012GA610003), and Science and Technology Planning Project of Tianjin (12ZCDZNC05900, 11ZCKFNC00400, 20120625, TD12-5018) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kezhi Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Q., Zhang, Y., Bai, D., Chen, C., Guo, Y., Xing, K. (2015). Estimation of Dietary Copper (Cu) Requirement of Cynoglossus semilaevis Günther. In: Zhang, TC., Nakajima, M. (eds) Advances in Applied Biotechnology. Lecture Notes in Electrical Engineering, vol 332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45657-6_26

Download citation

Publish with us

Policies and ethics