Skip to main content

Effects of Calcium on the Morphology of Rhizopus oryzae and L-lactic Acid Production

  • Conference paper
  • First Online:
  • 1794 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 332))

Abstract

The effects of exogenous calcium on fungal pellet morphology during preculture and L-lactic acid production were studied. The results showed that addition of exogenous calcium could induce pellet formation. The diameter of the pellet increased with increasing concentration of exogenous calcium, including CaCl2 and CaCO3. The smaller pellet precultured with low concentration of soluble calcium (CaCl2) was beneficial for L-lactic acid production because the pellet was dense and the large inner part of the pellet was inactive. By contrast, the larger pellet precultured with high concentration of insoluble calcium (CaCO3), except 8.0 g/L CaCO3, was beneficial for L-lactic acid production. Supported by the CaCO3 powder, the entire biomass layer was fully active, and the highest L-lactic acid productivities of 1.22 g/L h and 58.6 g/L L-lactic acid were reached using the 1.5 mm pellet.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Meussen BJ, de Graaff LH, Sanders JPM, Weusthuis RA (2012) Metabolic engineering of Rhizopus oryzae for the production of platform chemicals. Appl Microbiol Biotechnol 94:875–886

    Google Scholar 

  2. Grimm LH, Kelly S, Krull R, Hempel DC (2005) Morphology and productivity of filamentous fungi. Appl Microbiol Biotechnol 69:375–384

    Article  CAS  Google Scholar 

  3. Kossen NWF (2000) The morphology of filamentous fungi. Adv Biochem Eng Biotechnol 70:1–32

    CAS  Google Scholar 

  4. Liao W, Liu Y, Chen SL (2007) Studying pellet formation of a filamentous fungus Rhizopus oryzae to enhance organic acid production. Appl Biochem Biotechnol 136–140:689–701

    Google Scholar 

  5. Metz B, Kossen NWF (1977) The growth of molds in the form of pellets: literature review. Biotechnol Bioeng 19:781–799

    Article  CAS  Google Scholar 

  6. Engel CAR, Gulik WM, Marang L, Wielen LAM, Straathof AJJ (2011) Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae. Enzyme Microb Tech 48:39–47

    Article  Google Scholar 

  7. Zhou Y, Du JX, Tsao GT (2000) Mycelial pellet formation by Rhizopus oryzae ATCC 20344. Appl Biochem Biotechnol 84–86:779–789

    Article  Google Scholar 

  8. Posch AE, Spadiut O, Herwig C (2012) A novel method for fast and statistically verified morphological characterization of filamentous fungi. Fungal Genet Biol 49:499–510

    Article  Google Scholar 

  9. Jüsten P, Paul GC, Nienow AW, Thomas CR (1998) Dependence of Penicillium chrysogenum growth, morphology, vacuolation, and productivity in fed-batch fermentations on impeller type and agitation intensity. Biotechnol Bioeng 59(6):762–775

    Article  Google Scholar 

  10. Braun S, Vecht-Lifshitz SE (1991) Mycelial morphology and metabolite production. Tibtech 9:63–68

    Article  Google Scholar 

  11. Žnidaršič P, Pavko A (2001) The morphology of filamentous fungi in submerged cultivations as a bioprocess parameter. Food Technol Biotechnol 39(3):237–252

    Google Scholar 

  12. Jackson SL, Heath IB (1993) Roles of calcium ions in hyphal tip growth. Microbiol Rev 57(2):367–382

    CAS  Google Scholar 

  13. Žnidaršič P, Komel R, Pavko A (2000) Influence of some environmental factors on Rhizopus nigricans submerged growth in the form of pellets. World J Microb Biot 16:589–593

    Article  Google Scholar 

  14. Pera LM, Callieri DA (1997) Influence of calcium on fungal growth, hyphal morphology and citric acid production in Aspergillus niger. Folia Microbiol 42(6):551–556

    Article  CAS  Google Scholar 

  15. Robson GD, Wiebe MG, Trinci APJ (1991) Involvement of Ca2+ in the regulation of hyphal extension branching in Fusarium graminearum A 3/5. Exp Mycol 15:263–272

    Article  CAS  Google Scholar 

  16. Robson GD, Wiebe MG, Trinci APJ (1991) Low calcium concentrations induce increased branching in Fusarium graminearum. Mycol Res 95(5):561–565

    Article  CAS  Google Scholar 

  17. Jackson SL, Heath IB (1989) Effects of exogenous calcium ions on tip growth, intracellurar Ca2+ concentration, and actin arrays in hyphae of the Fungus Saprolegnia ferax. Exp Mycol 13:1–12

    Article  Google Scholar 

  18. Fu YQ, Li S, Chen Y, Xu Q, Huang H, Sheng XY (2010) Enhancement of fumaric acid production by Rhizopus oryzae using a two-stage dissolved oxygen control strategy. Appl Biochem Biotechnol 162:1031–1038

    Article  CAS  Google Scholar 

  19. Saavedra-Mobina A, Uribe S, Devlin TM (1990) Control of mitochondrial matrix calcium: studies using Fluo-3 as a fluorescent calcium indicator. Biochem Biopys Res Commun 167:148–153

    Article  Google Scholar 

  20. Liu Y, Liao W, Liu CB, Chen SL (2006) Optimization of L-(+)-lactic acid production using pelletized filamentous Rhizopus oryzae NRRL 395. Appl Biochem Biotechnol 129–132:844–853

    Article  Google Scholar 

  21. Metz B, Kossen NWF (1977) The growth of molds in the form of pellets: a literature review. Biotechnol Bioeng 19:781–800

    Article  CAS  Google Scholar 

  22. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259

    Article  CAS  Google Scholar 

  23. Makagiansar HY, Shamalou PA, Thomas CR, Lilly MD (1993) The influence of mechanical forces on the morphology and penicillin production of Penicillium chrysogenum. Bioprocess Eng 9:83–90

    Article  CAS  Google Scholar 

  24. Villena GK, Fujikawa T, Tsuyumu S, Gutiérrez-Correa M (2010) Structural analysis of biofilms and pellets of Aspergillus niger by confocal laser scanning microscopy and cryo scanning electron microscopy. Bioresour Technol 101:1920–1926

    Article  CAS  Google Scholar 

  25. Driouch H, Hänsch R, Wucherpfennig T, Krull R, Wittmann C (2012) Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles. Biotechnol Bioeng 109(2):462–471

    Article  CAS  Google Scholar 

  26. Walisko R, Krull R, Schrader J, Wittmann C (2012) Microparticle based morphology engineering of filamentous microorganisms for industrial bio-production. Biotechnol Lett 34(11):1975–1982

    Article  CAS  Google Scholar 

  27. Hille A, Neu TR, Hempel DC, Horn H (2005) Oxygen profiles and biomass distribution in biopellets of Aspergillus niger. Biotechnol Bioeng 92:614–623

    Article  CAS  Google Scholar 

  28. Driouch H, Roth A, Dersch P (2010) Filamentous fungi in good shape: microparticles for tailor-made fungal morphology and enhanced enzyme production. Bioeng Bugs 2:1–5

    Google Scholar 

  29. Kaup BA, Ehrich K, Pescheck M, Schrader J (2007) Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example. Biotechnol Bioeng 99:491–498

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21106091), Zhejiang Provincial Natural Science Foundation of China (LQ12B06004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Qian Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fu, YQ., Yin, LF., Jiang, R., Zhu, HY., Ruan, QC. (2015). Effects of Calcium on the Morphology of Rhizopus oryzae and L-lactic Acid Production. In: Zhang, TC., Nakajima, M. (eds) Advances in Applied Biotechnology. Lecture Notes in Electrical Engineering, vol 332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45657-6_25

Download citation

Publish with us

Policies and ethics