Skip to main content

The Biological Effects of Carbon Nanotubes in Plasma Membranes Damage, DNA Damage, and Mitochondrial Dysfunction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 332))

Abstract

In the last ten years, accompanied by deep development of nanotechnology, a large number of nanomaterials have come into people’s horizons. Carbon nanotubes (CNTs), one of the important nanometer materials, have been widely applied to various biomedical applications such as cancer photothermal therapy, specific drugs delivery, and so on due to their unique physicochemical property. Along with applications of CNT, the relationship between the biotoxicity of CNT and health was widely concerned. This review provides a general overview of the biological damage of overexposure of single-walled carbon nanotubes (SWCNTs) and mutiwalled carbon nanotubes (MWCNTs) and discusses some of the challenges associated with CNTs toxicity.

Z. Zhao and Z.-P. Liu had contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lucovsky G, Phillips JC (2010) Nano-regime length scales extracted from the first sharp diffraction peak in non-crystalline SiO(2) and related materials: device applications. Nanoscale Res Lett 5:550–558

    Article  CAS  Google Scholar 

  2. Huang T, Nancy XX (2010) Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J Mater Chem 20:9867–9876

    Article  CAS  Google Scholar 

  3. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  4. Stoner BR, Brown B, Glass JT (2014) Selected topics on the synthesis, properties and applications of multiwalled carbon nanotubes. Diam Relat Mater 42:49–57

    Article  CAS  Google Scholar 

  5. Ye P, Zhang W, Yang T et al (2014) Folate receptor-targeted liposomes enhanced the antitumor potency of imatinib through the combination of active targeting and molecular targeting. Int J Nanomed 9:2167–2178

    Article  Google Scholar 

  6. Nagy L, Magyar M, Szabo T et al (2014) Photosynthetic machineries in nano-systems. Curr Protein Pept Sci 15:363–373

    Article  CAS  Google Scholar 

  7. Uo M, Akasaka T, Watari F et al (2011) Toxicity evaluations of various carbon nanomaterials. Dent Mater J 30:245–263

    Article  CAS  Google Scholar 

  8. Kam NW, Dai H (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127:6021–6026

    Article  CAS  Google Scholar 

  9. Porter AE, Gass M, Muller K et al (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2:713–717

    Article  CAS  Google Scholar 

  10. Ryman-Rasmussen JP, Cesta MF, Brody AR et al (2009) Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4:747–751

    Article  CAS  Google Scholar 

  11. Ma-Hock L, Treumann S, Strauss V et al (2009) Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112:468–481

    Article  CAS  Google Scholar 

  12. Mitchell LA, Gao J, Wal RV et al (2007) Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 100:203–214

    Article  CAS  Google Scholar 

  13. Chou CC, Hsiao HY, Hong QS et al (2008) Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 8:437–445

    Article  CAS  Google Scholar 

  14. Poland CA, Duffin R, Kinloch I et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  CAS  Google Scholar 

  15. Takagi A, Hirose A, Nishimura T et al (2008) Induction of mesothelioma in p53± mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33:105–116

    Article  CAS  Google Scholar 

  16. Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Article  CAS  Google Scholar 

  17. Montes-Fonseca SL, Orrantia-Borunda E, Aguilar-Elguezabal A et al (2012) Cytotoxicity of functionalized carbon nanotubes in J774A macrophages. Nanomedicine 8:853–859

    Article  CAS  Google Scholar 

  18. Shimizu K, Uchiyama A, Yamashita M et al (2013) Biomembrane damage caused by exposure to multi-walled carbon nanotubes. J Toxicol Sci 38:7–12

    Article  CAS  Google Scholar 

  19. Lelimousin M, Sansom MS (2013) Membrane perturbation by carbon nanotube insertion: pathways to internalization. Small 9:3639–3646

    Article  CAS  Google Scholar 

  20. Firme CR, Bandaru PR (2010) Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine 6:245–256

    Article  CAS  Google Scholar 

  21. Yaron PN, Holt BD, Short PA et al (2011) Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration. J Nanobiotechnol 9:45

    Article  CAS  Google Scholar 

  22. Hirano S, Kanno S, Furuyama A (2008) Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol 232:244–251

    Article  CAS  Google Scholar 

  23. Herzog E, Byrne HJ, Davoren M et al (2009) Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples. Toxicol Appl Pharmacol 236:276–281

    Article  CAS  Google Scholar 

  24. Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74

    Article  CAS  Google Scholar 

  25. Kagan VE, Tyurina YY, Tyurin VA et al (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165:88–100

    Article  CAS  Google Scholar 

  26. Ye SF, Wu YH, Hou ZQ et al (2009) ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun 379:643–648

    Article  CAS  Google Scholar 

  27. Wick P, Manser P, Limbach LK et al (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131

    Article  CAS  Google Scholar 

  28. Pacurari M, Yin XJ, Zhao J et al (2008) Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116:1211–1217

    Article  CAS  Google Scholar 

  29. Shvedova AA, Castranova V, Kisin ER et al (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66:1909–1926

    Article  CAS  Google Scholar 

  30. Monteiro-Riviere NA, Nemanich RJ, Inman AO et al (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384

    Article  CAS  Google Scholar 

  31. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285

    Article  CAS  Google Scholar 

  32. Ohshima H, Tatemichi M, Sawa T (2003) Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys 417:3–11

    Article  CAS  Google Scholar 

  33. Karlsson HL, Cronholm P, Gustafsson J et al (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  CAS  Google Scholar 

  34. Kisin ER, Murray AR, Sargent L et al (2011) Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos? Toxicol Appl Pharmacol 252:1–10

    Article  CAS  Google Scholar 

  35. Lindberg HK, Falck GC, Suhonen S et al (2009) Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 186:166–173

    Article  CAS  Google Scholar 

  36. Yamashita K, Yoshioka Y, Higashisaka K et al (2010) Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation 33:276–280

    Article  CAS  Google Scholar 

  37. Zhu L, Chang DW, Dai L et al (2007) DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 7:3592–3597

    Article  CAS  Google Scholar 

  38. Guo F, Ma N, Horibe Y et al (2012) Nitrative DNA damage induced by multi-walled carbon nanotube via endocytosis in human lung epithelial cells. Toxicol Appl Pharmacol 260:183–192

    Article  CAS  Google Scholar 

  39. Di Giorgio ML, Di Bucchianico S, Ragnelli AM et al (2011) Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res 722:20–31

    Article  Google Scholar 

  40. Guo YY, Zhang J, Zheng YF et al (2011) Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro. Mutat Res 721:184–191

    Article  CAS  Google Scholar 

  41. Patlolla AK, Berry A, Tchounwou PB (2011) Study of hepatotoxicity and oxidative stress in male Swiss-Webster mice exposed to functionalized multi-walled carbon nanotubes. Mol Cell Biochem 358:189–199

    Article  CAS  Google Scholar 

  42. Migliore L, Saracino D, Bonelli A et al (2010) Carbon nanotubes induce oxidative DNA damage in RAW 264.7 cells. Environ Mol Mutagen 51:294–303

    CAS  Google Scholar 

  43. Manna SK, Sarkar S, Barr J et al (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett 5:1676–1684

    Article  CAS  Google Scholar 

  44. Sharma CS, Sarkar S, Periyakaruppan A et al (2007) Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J Nanosci Nanotechnol 7:2466–2472

    Article  CAS  Google Scholar 

  45. Davoren M, Herzog E, Casey A et al (2007) In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 21:438–448

    Article  CAS  Google Scholar 

  46. Liu Y, Zhao Y, Sun B et al (2013) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46:702–713

    Article  CAS  Google Scholar 

  47. Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68

    Article  CAS  Google Scholar 

  48. Bayraktar H, Ghosh PS, Rotello VM et al (2006) Disruption of protein-protein interactions using nanoparticles: inhibition of cytochrome c peroxidase. Chem Commun (Camb) 7:1390-2

    Google Scholar 

  49. Karajanagi SS, Vertegel AA, Kane RS et al (2004) Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20:11594–11599

    Article  CAS  Google Scholar 

  50. Yi C, Fong CC, Zhang Q et al (2008) The structure and function of ribonuclease a upon interacting with carbon nanotubes. Nanotechnology 19:095102

    Article  Google Scholar 

  51. Zhang B, Xing Y, Li Z et al (2009) Functionalized carbon nanotubes specifically bind to alpha-chymotrypsin’s catalytic site and regulate its enzymatic function. Nano Lett 9:2280–2284

    Article  CAS  Google Scholar 

  52. Sandanaraj BS, Bayraktar H, Krishnamoorthy K et al (2007) Recognition and modulation of cytochrome c’s redox properties using an amphiphilic homopolymer. Langmuir 23:3891–3897

    Article  CAS  Google Scholar 

  53. Armstrong JS (2007) Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br J Pharmacol 151:1154–1165

    Article  CAS  Google Scholar 

  54. Maloyan A, Sanbe A, Osinska H et al (2005) Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy. Circulation 112:3451–3461

    Article  CAS  Google Scholar 

  55. Irwin WA, Bergamin N, Sabatelli P et al (2003) Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat Genet 35:367–371

    Article  CAS  Google Scholar 

  56. Zhou F, Xing D, Wu B et al (2010) New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett 10:1677–1681

    Article  CAS  Google Scholar 

  57. Ma X, Zhang LH, Wang LR et al (2012) Single-walled carbon nanotubes alter cytochrome c electron transfer and modulate mitochondrial function. ACS Nano 6:10486–10496

    CAS  Google Scholar 

  58. Ye S, Jiang Y, Zhang H et al (2012) Multi-walled carbon nanotubes induce apoptosis in RAW 264.7 cell-derived osteoclasts through mitochondria-mediated death pathway. J Nanosci Nanotechnol 12:2101–2112

    Article  CAS  Google Scholar 

  59. Wang X, Guo J, Chen T et al (2012) Multi-walled carbon nanotubes induce apoptosis via mitochondrial pathway and scavenger receptor. Toxicol In Vitro 26:799–806

    Article  CAS  Google Scholar 

  60. Wang LR, Xue X, Hu XM et al (2014) Structure-dependent mitochondrial dysfunction and hypoxia induced with single-walled carbon nanotubes. Small 10:2859–2869

    Article  CAS  Google Scholar 

  61. Cheng WW, Lin ZQ, Wei BF et al (2011) Single-walled carbon nanotube induction of rat aortic endothelial cell apoptosis: Reactive oxygen species are involved in the mitochondrial pathway. Int J Biochem Cell Biol 43:564–572

    Article  CAS  Google Scholar 

  62. Zhou F, Wu S, Wu B et al (2011) Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy. Small 7:2727–2735

    Article  CAS  Google Scholar 

  63. Li K, Li Y, Shelton JM et al (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101:389–399

    Article  CAS  Google Scholar 

  64. Cai J, Yang J, Jones DP (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1366:139–149

    Article  CAS  Google Scholar 

  65. Debatin KM, Poncet D, Kroemer G (2002) Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 21:8786–8803

    Article  CAS  Google Scholar 

  66. Budihardjo I, Oliver H, Lutter M et al (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    Article  CAS  Google Scholar 

  67. Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112:481–490

    Article  CAS  Google Scholar 

  68. Ding L, Stilwell J, Zhang T et al (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 5:2448–2464

    Article  CAS  Google Scholar 

  69. Yang S, Guo W, Lin Yi et al (2007) Biodistribution of pristine single-walled carbon nanotubes in vivo. Phys Chem C 111:17761–17764

    Article  CAS  Google Scholar 

  70. Wang J, Deng X, Yang S (2008) Rapid translocation and pharmacokinetics of hydroxylated single-walled carbon nanotubes in mice. Nanotoxicology 2:28–32

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Peng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, Z. et al. (2015). The Biological Effects of Carbon Nanotubes in Plasma Membranes Damage, DNA Damage, and Mitochondrial Dysfunction. In: Zhang, TC., Nakajima, M. (eds) Advances in Applied Biotechnology. Lecture Notes in Electrical Engineering, vol 332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45657-6_19

Download citation

Publish with us

Policies and ethics