Skip to main content

Improved Lactose Utilization by Overexpression β-Galactosidase and Lactose Permease in Klebsiella pneumoniae

  • Conference paper
  • First Online:
Advances in Applied Biotechnology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 332))

  • 1783 Accesses

Abstract

As an important bio-based chemical product, 2,3-butanediol has a wide range of applications in many fields, such as chemical, fuel, food, and aerospace. Cheese whey powder (CWP), an inexpensive, available, and abundant material, is considered to be an ideal substrate for 2,3-BD fermentation. To improve 2,3-butanediol production, the previous studies mainly focus on the metabolic pathway from pyruvate to 2,3-butanediol or the metabolic pathway of by-products, but studies about improving lactose utilization rate are rarely reported. In the present study, adding exogenous β-galactosidase was proved to favor the lactose utilization and lactose utilization might be the limiting step of lactose fermentation to 2,3-butanediol. ElacY (encoding lactose permease of Escherichia coli) and bgaB (encoding β-galactosidase of K. pneumonia) were overexpressed in K. pneumonia CICC10781. Of the two genes, only overexpression of ElacY promoted lactose utilization of CICC10781, and meanwhile the 2,3-butanediol generation capacity was not affected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim DK, Rathnasingh C, Song H et al (2013) Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production. J Biosci Bioeng 116:186–192

    Article  CAS  Google Scholar 

  2. Han SH, Lee JE, Park K et al (2013) Production of 2,3-butanediol by a low-acid producing Klebsiella oxytoca NBRF4. New Biotechnol 30:166–172

    Article  CAS  Google Scholar 

  3. Guo XW, Cao CH, Wang YZ et al (2014) Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain. Biotechnol Biofuels 7:44

    Article  Google Scholar 

  4. Yu EKC, Levitin N, Saddler JN (1982) Production of 2,3-Butanediol by Klebsiella pneumoniae grown on acid hydrolyzed wood hemicelluloses. Biotechnol Lett 4:741–746

    Article  CAS  Google Scholar 

  5. Song Y, Xu Y, Li Q et al (2011) Fermentation of bio-based product 2,3-butanediol. Chem ind and Eng Prog 30:1069–1077 (in Chinese)

    CAS  Google Scholar 

  6. Lee HK, Maddox IS (1984) Microbial production of 2,3-Butanediol from whey permeate. Biotechnol Lett 6:815–818

    Article  CAS  Google Scholar 

  7. Lee HK, Maddox IS (1986) Continuous production of 2,3-butanediol from whey permeate using Klebsiella pneumoniae immobilized in calcium alginate. Enzyme and iol technol 8:409–411

    Article  CAS  Google Scholar 

  8. Wang A, Wang Y, Jiang T et al (2010) Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Appl Microbiol Biotechnol 87:965–970

    Article  CAS  Google Scholar 

  9. Petrov K, Petrova P (2010) Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl Iol Biotechnol 87:943–949

    Article  CAS  Google Scholar 

  10. Petrov K, Petrova P (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Iol Biotechnol 84:659–665

    Article  CAS  Google Scholar 

  11. Sun LH, Wang XD, Dai JY et al (2009) Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumonia. Appl Microbiol Biotechnol 82:847–852

    Article  CAS  Google Scholar 

  12. Fages J, Mulard D, Rouquet JJ et al (1986) 2,3-Butanediol production from Jerusalem artichoke, Helianthus tuberosus, by Bacillus polymyxa ATCC 12 321. Optim of k L a profile: Appl Microbiol and Biotechnol 25:197–202

    CAS  Google Scholar 

  13. Cheng K, Liu Q, Zhang JA et al (2010) Improved 2,3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca. Process Biochem 45:613–616

    Article  CAS  Google Scholar 

  14. Guo XW, Wang RS, Chen YF et al (2012) Intergeneric yeast fusants with efficient ethanol production from cheese whey powder solution: construction of a Kluyveromyces marxianus and Saccharomyces cerevisiae AY-5 hybrid. Eng Life Sci 12(6):656–661

    Article  CAS  Google Scholar 

  15. Guo XW, Zhou J, Xiao DG (2010) Improved ethanol production by mixed immobilized cells of Kluyveromyces marxianus and Saccharomyces cerevisiae from cheese whey powder solution fermentation. Appl Biochem Biotechnol 160(2):532–538

    Article  CAS  Google Scholar 

  16. Martinez SB, Speckman RA (1988) 2,3-Butanediol production from hydrolyzed whey permeate by immobilized cells of Bacillus polymyxa. Appl Biochem Biotechnol 18:303–313

    Article  CAS  Google Scholar 

  17. Speckman R, Collins E (1982) Microbial production of 2,3-butylene glycol from cheese whey. Appl Environ Microbiol 43:1216–1218

    CAS  Google Scholar 

  18. Guo XW, Zhang YH, Cao CH et al (2014) Enhanced production of 2,3-butanediol by overexpressing acetolactate synthase and acetoin reductase in Klebsiella pneumoniae. Biotechnol Appl Biochem. doi:10.1002/bab.1217

    Google Scholar 

  19. Bai LP, Wu XB, Jiang LJ et al (2012) Hydrogen production by over-expression of hydrogenase subunit in oxygen tolerant Klebsiella oxytoca HP1. Int J Hydrogen Energy 37:13227

    Article  CAS  Google Scholar 

  20. Zou J, Guo X, Shen T et al (2013) Construction of lactose-consuming Saccharomyces cerevisiae for lactose fermentation into ethanol fuel. J Ind Microbiol Biotechnol 40(3–4):353–363

    Article  CAS  Google Scholar 

  21. Beney L, Marechal PA, Gervais P (2001) Coupling effects of osmotic pressure and temperature on the viability of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 56:513–516

    Article  CAS  Google Scholar 

  22. Ji XJ, Xia ZF, Fu NH et al (2013) Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumonia. Biotechnol Biofuels 6:7–15

    Article  CAS  Google Scholar 

  23. Kleiner D, Paul W, Merrick MJ (1988) Construction of multicopy expression vectors for regulated over-production of proteins in Klebsiella pneumoniae and other enteric bacteria. J Gen Microbiol 134:1779–1784

    CAS  Google Scholar 

  24. Fekete E, Karaffa L, Seiboth B et al (2012) Ident of a permease gene involved in lactose utilisation in Aspergillus nidulans. Fungal Gen Biol 49:415–425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financed by the Cheung Kong Scholars and Innovative Research Team Program in University of Ministry of Education, China (Grant Number IRT1166), the National High Technology Research, and the Development Program of China (863 Program) (Grant Number 2012AA022108), the National Agricultural Research Projects Funded (Grant Number 2012AA101805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongguang Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, X., Wang, Y., Guan, X., Chen, Y., Zhang, C., Xiao, D. (2015). Improved Lactose Utilization by Overexpression β-Galactosidase and Lactose Permease in Klebsiella pneumoniae . In: Zhang, TC., Nakajima, M. (eds) Advances in Applied Biotechnology. Lecture Notes in Electrical Engineering, vol 332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45657-6_13

Download citation

Publish with us

Policies and ethics