Skip to main content

Cloning and Bioinformatics Analysis of spsC Gene from Sphingomonas sanxanigenens NX02

  • Conference paper
  • First Online:
Advances in Applied Biotechnology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 332))

  • 1786 Accesses

Abstract

Sphingomonas sanxanigenens strain NX02 synthesizes a novel sphingan Ss, which can be used as drilling mud and thickening agent in the recovery of petroleum by water flooding. In order to research genes involved in the biosyntheses of sphingan Ss, strain NX02 was induced by transposon mini-Tn5 on suicide plasmid pUT, and a mutant strain T163, which cannot produce sphingan Ss, was screened. The spsC gene of NX02 was obtained by the method of Tn5 flanking PCR and LP-RAPD. The predicted amino acid sequence of the spsC protein possessed 493 amino acids and a calculated molecular mass of 53.5 kDa. Bioinformatics analysis revealed that spsC had the highest 60 % amino acid sequence identity with polysaccharide biosynthesis protein of Novosphingobium lindaniclasticum LE124. spsC protein had typical polysaccharide polymerases family transmembrane helices, located between amino acids Y13-V44 and P411-L436. The N-terminal sequence of spsC had high identity to chain length determinant protein of Wzz superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pollock TJ (1993) Gellan-related polysaccharides and the genus Sphingomonas. J Gen Microbiol 139:1939–1945

    Article  CAS  Google Scholar 

  2. Sá-Correia I, Fialho AM, Videira P, Moreira LM, Marques AR, Albano H (2002) Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J Ind Microbiol Biotechnol 29:170–176

    Article  Google Scholar 

  3. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119

    Article  CAS  Google Scholar 

  4. Prajapati VD, Jani GK, Zala BS, Khutliwala TA (2013) An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr Polym 93:670–678

    Article  CAS  Google Scholar 

  5. Smith AM, Shelton RM, Perrie Y, Harris JJ (2007) An initial evaluation of gellan gum as a material for tissue engineering applications. J Biomater Appl 22:241–254

    Article  CAS  Google Scholar 

  6. Banik RM, Kanari B, Upadhyay S (2000) Exopolysaccharide of the gellan family: prospects and potential. World J Microbiol Biotechnol 16:407–414

    Article  CAS  Google Scholar 

  7. Ishwar BB, Shrikant AS, Parag SS, Rekha SS (2007) Gellan gum: fermentative production, downstream processing and applications. Food Technol Biotechnol 45:341–354

    Google Scholar 

  8. Seo EJ, Yoo SH, Oh KW, Cha J, Lee HG, Park CS (2004) Isolation of an exopolysaccharide-producing bacterium, Sphingomonas sp. CS101, which forms an unusual type of sphingan. Biosci Biotechnol Biochem 68:1146–1148

    Article  CAS  Google Scholar 

  9. Huang HD, Wang W, Ma T, Li GQ, Liang FL, Liu RL (2009) Sphingomonas sanxanigenens sp. nov., isolated from soil. Int J Syst Evol Microbiol 59:719–723

    Article  CAS  Google Scholar 

  10. Huang HD, Wang W, Ma T, Li ZY, Liang FL, Liu RL (2009) Analysis of molecular compositioni and properties of a novel biopolymer. Chem J Chin Univ 30:324–327

    CAS  Google Scholar 

  11. Yamazaki M, Thorne L, Mikolajczak M, Armentrout RW, Pollock TJ (1996) Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88. J Bacteriol 178:2676–2687

    CAS  Google Scholar 

  12. Coleman RJ, Patel YN, Harding NE (2008) Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159. J Ind Microbiol Biotechnol 35:263–274

    Article  CAS  Google Scholar 

  13. Li H, Xu H, Xu H, Li S, Ouyang PK (2010) Biosynthetic pathway of sugar nucleotides essential for welan gum production in Alcaligenes sp. CGMCC2428. Appl Microbiol Biotechnol 86:295–303

    Article  CAS  Google Scholar 

  14. Fialho AM, Moreira LM, Granja AT, Popescu AO, Hoffmann K, Sá-Correia I (2008) Occurrence, production, and applications of gellan: current state and perspectives. Appl Microbiol Biotechnol 79:889–900

    Article  CAS  Google Scholar 

  15. Moreira LM, Hoffmann K, Albano H, Becker A, Niehaus K, Sá-Correia I (2004) The gellan gum biosynthetic genes gelC and gelE encode two separate polypeptides homologous to the activator and the kinase domains of tyrosine autokinases. J Mol Microbiol Biotechnol 8:43–57

    Article  CAS  Google Scholar 

  16. Rather PN, Ding X, Lancey RB, Siddiqui S (1999) Providencia stuartii genes activated by cell-to-cell signaling and identification of a gene required for production or activity of an extracellular factor. J Bacteriol 181:7185–7191

    CAS  Google Scholar 

  17. Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New York

    Google Scholar 

  18. Cashion P, Holder-Franklin MA, McCully J, Franklin M (1977) A rapid method for the base ratio determination of bacterial DNA. Anal Biochen 81:461–466

    Article  CAS  Google Scholar 

  19. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  CAS  Google Scholar 

  20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  21. Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Article  CAS  Google Scholar 

  22. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  23. Guffin LJ, Bryson K, David TJ (2000) The PSIPRED protein structure prediction server. Bioinform 16:404–405

    Article  Google Scholar 

  24. Videira PA, Fialho AM, Geremia RA, Breton C, Sá-Correia I (2001) Biochemical characterization of the beta-1,4-glucuronosyltransferase GelK in the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461. Biochem J 358:457–464

    Article  CAS  Google Scholar 

  25. Huang HD, Li XY, Wu MM, Wang SX, Li GQ, Ma T (2013) Cloning, expression and characterization of a phosphoglucomutase/phosphomannomutase from sphingan-producing Sphingomonas sanxanigenens. Biotechnol Lett 35:1265–1270

    Article  CAS  Google Scholar 

  26. Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Ann Rev Biochem 75:39–68

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Tianjin Research Program of Application Foundation and Advanced Technology (11JCZDJC16600) for the financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haidong Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, X., Huang, H., Zhou, M., Zhang, P. (2015). Cloning and Bioinformatics Analysis of spsC Gene from Sphingomonas sanxanigenens NX02. In: Zhang, TC., Nakajima, M. (eds) Advances in Applied Biotechnology. Lecture Notes in Electrical Engineering, vol 332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45657-6_1

Download citation

Publish with us

Policies and ethics