Skip to main content

Multiple Orthogonal K-means Hashing

  • Conference paper
  • First Online:
Machine Learning and Cybernetics (ICMLC 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 481))

Included in the following conference series:

Abstract

Hashing methods are efficient in dealing with large scale image retrieval problems. Current hashing methods, such as the orthogonal k-means, using coordinate descent algorithm to minimize quantization error usually yield unstable performance. It is because the coordinate descent algorithm only provides a local optimum solution. The orthogonal k-means develops a new model with a compositional parameterization of cluster centers to efficiently represent multiple centers. The objective of the orthogonal k-means is to minimize the quantization error by using the coordinate descent algorithm to find the optimal rotation, scaling and translation on descriptor vectors of images. The performance of the orthogonal k-means is dependent on the initialization of the rotation matrix. In this work, we propose the multiple ok-means hashing method to reduce the instability of performance of the orthogonal k-means hashing. For large scale retrieval problems, standard multiple hash tables methods using M tables require M times storage in comparison to single hash table schemes. We propose a binary code selection scheme to reduce the storage of the multiple orthogonal k-means to use the same size of storage as for single table’s. Experimental results show that the proposed method outperforms ok-mean using the same size of storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal algorithm for approximate nearest neighbor searching fixed dimensional. Journal of the ACM 45(6), 891–923 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Wu, C., Zhu, J., Cai, D., Chen, C., Bu, J.: Semi-supervised nonlinear hashing using bootstrap sequential projection learning. IEEE Transactions on Knowledge and Data Engineering 25(6), 1380–1393 (2013)

    Article  Google Scholar 

  3. Gordo, A., Perronnin, F.: Asymmetric distances for binary embeddings. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 729–736 (2011)

    Google Scholar 

  4. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual Symposium on Computational Geometry, pp. 253–262. ACM (2004)

    Google Scholar 

  5. Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions via hashing. In: Proceedings of the 25th VLDB Conference, Edinburgh, Scotland, pp. 518–529 (1999)

    Google Scholar 

  6. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, pp. 459–468 (2006)

    Google Scholar 

  7. Raginsky, M., Lazebnik, S.: Locality-Sensitive Binary codes from Shift-Invariant Kernels. In: Advances in Neural Information Processing Systems (NIPS), 22, pp. 2130–2137 (2009)

    Google Scholar 

  8. Gong, Y., Lazebnik, S., Iterative quantization: A procrustean approach to learning binary codes. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 817–824 (2011)

    Google Scholar 

  9. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(12), 2916–2929 (2013)

    Article  Google Scholar 

  10. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural Information Processing Systems (NIPS) 9, pp. 1753–1760 (2008)

    Google Scholar 

  11. Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In: Advances in Neural Information Processing Systems (NIPS) 22, pp. 1042–1050 (2009)

    Google Scholar 

  12. Norouzi, M., Blei, D.M.: Minimal loss hashing for compact binary codes. In: Proceedings of the 28th International Conference on Machine Learning (ICML-2011), pp. 353–360 (2011)

    Google Scholar 

  13. Liu, W., Wang, J., Ji, R., Jiang, Y.G., Chang, S.F.: Supervised hashing with kernels. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2074–2081 (2012)

    Google Scholar 

  14. Lloyd, Stuart P.: Least squares quantization in pcm. IEEE Transactions on Information Theory 28(2), 129–136 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Norouzi, M., Fleet, D.J.: Cartesian k-means. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3017–3024 (2013)

    Google Scholar 

  16. Xu, H., Wang, J., Li, Z., Zeng, G., Li, S., Yu, N.: Complementary hashing for approximate nearest neighbor search. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1631–1638 (2011)

    Google Scholar 

  17. Schönemann, P.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1) (1966)

    Google Scholar 

  18. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(1) (2011)

    Google Scholar 

  19. http://corpus-texmex.irisa.fr/

  20. Krizhevsky, A.: Learning multiple layers of features from tiny images. MSc Thesis, Univ. Toronto (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziqian Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeng, Z., Lv, Y., Ng, W.W.Y. (2014). Multiple Orthogonal K-means Hashing. In: Wang, X., Pedrycz, W., Chan, P., He, Q. (eds) Machine Learning and Cybernetics. ICMLC 2014. Communications in Computer and Information Science, vol 481. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45652-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45652-1_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45651-4

  • Online ISBN: 978-3-662-45652-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics