Skip to main content

Fast Augmented Lagrangian Method for Image Smoothing with Hyper-Laplacian Gradient Prior

  • Conference paper
Pattern Recognition (CCPR 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 484))

Included in the following conference series:

Abstract

As a fundamental tool, L 0 gradient smoothing has found a flurry of applications. Inspired by the progress of research on hyper-Laplacian prior, we propose a novel model, corresponding to L p-norm of gradients, for image smoothing, which can better maintain the general structure, whereas diminishing insignificant texture and impulse noise-like highlights. Algorithmically, we use augmented Lagrangian method (ALM) to efficiently solve the optimization problem. Thanks to the fast convergence rate of ALM, the speed of the proposed method is much faster than the L 0 gradient method. We apply the proposed method to natural image smoothing, cartoon artifacts removal, and tongue image segmentation, and the experimental results validate the performance of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Park, J.M., Murphey, Y.L.: Edge detection in grayscale, color, and range images. Wiley Encyclopedia of Computer Science and Engineering (2008)

    Google Scholar 

  2. Carreira, J., Sminchisescu, C.: Constrained parametric min-cuts for automatic objects egmentation. In: IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp. 3241–3248 (2010)

    Google Scholar 

  3. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-rangeimages. ACM Transactions on Graphics (TOG) 21, 257–266 (2002)

    Google Scholar 

  4. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transactions on Graphics (TOG) 27, 67 (2008)

    Article  Google Scholar 

  5. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1), 259–268 (1992)

    Article  MATH  Google Scholar 

  6. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via L0 gradient minimization. ACM Transactions on Graphics (TOG) 30(6), 174 (2011)

    Google Scholar 

  7. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. NIPS 22, 1–9 (2009)

    Google Scholar 

  8. Field, D.J.: What is the goal of sensory coding? Neural Computation 6(4), 559–601 (1994)

    Article  MathSciNet  Google Scholar 

  9. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventionalcamera with a coded aperture. ACM Transactions on Graphics (TOG) 26(3), 70 (2007)

    Article  Google Scholar 

  10. Simoncelli, E.P., Adelson, E.H.: Noise removal via bayesian wavelet coring. In: International Conference on Image Processing, vol. 1, pp. 379–382 (1996)

    Google Scholar 

  11. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: IEEE international conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3869–3872 (2008)

    Google Scholar 

  12. Cho, T.S., Joshi, N., Zitnick, C.L., Kang, S.B., Szeliski, R., Freeman, W.T.: A content-aware image prior. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 169–176 (2010)

    Google Scholar 

  13. Candes, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted l1 minimization. Journal of Fourier Analysis and Applications 14(5-6), 877–905 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zuo, W., Meng, D., Zhang, L., Feng, X., Zhang, D.: A generalized iterated shrinkage algorithm for non-convex sparse coding. In: IEEE International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  15. She, Y.: An iterative algorithm for fitting non-convex penalized generalized linear models with grouped predictors. Computational Statistics & Data Analysis 56(10), 2976–2990 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. NIPS 2, 6 (2011)

    Google Scholar 

  17. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Processing 7(3), 359–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, L., Zhang, H., Ren, D., Zhang, D., Zuo, W. (2014). Fast Augmented Lagrangian Method for Image Smoothing with Hyper-Laplacian Gradient Prior. In: Li, S., Liu, C., Wang, Y. (eds) Pattern Recognition. CCPR 2014. Communications in Computer and Information Science, vol 484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45643-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45643-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45642-2

  • Online ISBN: 978-3-662-45643-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics