Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The organic Rankine cycle (ORC) is a technology for low-grade heat to power conversion. The ORC functions in a similar way as the conventional steam Rankine cycle. The principle is simple. The organic fluid is pumped into a heat exchanger where it’s vaporized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bejan A (2006) Advanced engineering thermodynamics, 3rd edn. Wiley, Hoboken

    Google Scholar 

  2. The French Journal Nature, 21 June, 1890

    Google Scholar 

  3. Knight’s practical dictionary of mechanics. Cassell & Co, London, Datum (1884)

    Google Scholar 

  4. Alcohol Engines. www.douglas-self.com/MUSEUM/POWER/alcohol/alcohol.htm. Accessed 16 April 2014

  5. British Journal Engineering, 9 January, 1885

    Google Scholar 

  6. Appleton’s Cyclopedia of American Biography, New York, 1887

    Google Scholar 

  7. China’s dangerous smog seen from space. NOAA Environmental Visualization Laboratory. www.nnvl.noaa.gov/MediaDetail2.php?MediaID=1443&MediaTypeID=1. Accessed 22 Oct 2013

  8. China Meteorological Administration. www.cma.gov.cn/2011zwxx/2011zyjgl/2011zyjgldt/201402/t20140224_239174.html. Accessed 11 March 2014

  9. Intergovernmental Panel on Climate Change (IPCC), Climate Change (2013) The physical science basis—summary for policymakers, observed changes in the climate system, pp 10 and 11. In: IPCC AR5 WG1 2013

    Google Scholar 

  10. BP (British Petroleum) Statistical Review of World Energy. www.bp.com. Accessed 5 Dec 2013

  11. Barbier E (2002) Geothermal energy technology and current status: an overview. Renew Sustain Energy Rev 6:3–65

    Article  Google Scholar 

  12. Facts about waste heat. www.industrialwasteheat.com. Accessed 10 June 2014

  13. Bronicki LY (2014) Organic Rankine cycle power plant for waste heat recovery. www.ormat.com/research/papers/organic-rankine-cycle-power-plant-waste-heat-recovery. Accessed 10 May 2014

  14. Benefits of Triogen. www.triogen.nl/why-triogen/benefits. Accessed 12 May 2014

  15. Colonna P, Larjola J, Uusitalo A, Saaresti T, Honkatukia J, Casati E, Mathijssen T, Trapp C (2013) Organic rankine cycle power systems: the path from the concept to current applications and an outlook to the future. In: 2nd international seminar on ORC power systems, Rotterdam

    Google Scholar 

  16. The norm of energy consumption per unit products of cement. National Standards of the People’s Republic of China. GB16780-200X

    Google Scholar 

  17. The norm of energy consumption per unit products of cement. National Standards of the People’s Republic of China. GB 16780-2012

    Google Scholar 

  18. Concentrating solar power projects. www.nrel.gov/csp/solarpaces/. Accessed 22 March 2014

  19. List of solar thermal power stations. www.en.wikipedia.org/wiki/List_of_solar_thermal_power_stations#cite_note-63. Accessed 28 March 2014

  20. Concentrating solar power projects under construction. www.nrel.gov/csp/solarpaces/projects_by_status.cfm?status=Under%20Construction. Accessed 25 March 2014

  21. Dongqiang L, Zhifeng W, Fengli D (2007) The glass-to-metal sealing process in parabolic trough solar receivers. In: Proceedings of ISES world congress 2007, pp 740–744

    Google Scholar 

  22. Price H, Lupfert E, Kearney D, Zarza E, Cohen G, Gee R (2002) Advances in parabolic trough solar power technology. J Sol Energy Eng 124:109–125

    Article  Google Scholar 

  23. Ajona JI, Vidal A (2000) The use of CPC collectors for detoxification of contaminated water: design, construction and preliminary results. Sol Energy 68:109–120

    Google Scholar 

  24. Energyplus. http://apps1.eere.energy.gov/buildings/energyplus/energyplus_about.cfm. Accessed 15 June 2014

  25. Kenisarin M, Mahkamov K (2007) Solar energy storage using phase change materials. Renew Sustain Energy Rev 11:1913–1965

    Article  Google Scholar 

  26. Herrmann U, Kelly B, Price H (2004) Two-tank molten salt storage for parabolic trough solar power plants. Energy 29:883–893

    Article  Google Scholar 

  27. World’s largest solar thermal plant with storage comes online. http://cleantechnica.com/2013/10/14/worlds-largest-solar-thermal-plant-torage-comes-online/. Accessed 3 Jan 2014

  28. Prabhu E (2006) Solar trough organic Rankine electricity system (STORES) stage 1: power plant optimization and economics. Subcontract Report NREL/SR-550-39433, March 2006

    Google Scholar 

  29. Horror at the world’s largest solar farm days after it opens as it is revealed panels are scorching birds that fly over them, mail online. www.dailymail.co.uk/news/article-2560494/Worlds-largest-solar-farm-SCORCHING-BIRDS-fly-it.html. Accessed 18 March 2014

  30. Despite the complains made, pilots are still blinded by glare from solar power plant. http://mostepicstuff.com/despite-the-complains-made-pilots-are-still-blinded-by-glare-from-solar-power-plant/. Accessed 20 March 2014

  31. Pereira M (1985) Design and performance of a novel non-evacuated1.2x CPC type concentrator. In: Proceedings of intersol biennial, congress of ISES, Montreal, Canada, 1985, vol 2, pp 1199–1204

    Google Scholar 

  32. Rabl A, O’Gallagher J, Winston R (1980) Design and test of non-evacuated solar collectors with compound parabolic concentrators. Sol Energy 25:335–351

    Article  Google Scholar 

  33. Gudekar AS, Jadhav AS, Panse SV, Joshi JB, Pandit AB (2013) Cost effective design of compound parabolic collector for steam generation. Sol Energy 90:43–50

    Article  Google Scholar 

  34. Saitoh TS (2002) Proposed solar Rankine cycle system with phase change steam accumulator and CPC solar collector. In: 37th intersociety energy conversion engineering conference (IECEC), 2002, Paper No. 20150

    Google Scholar 

  35. CPC 6 XL INOX. www.rittersolar.de/english/index_e.htm. Accessed 2 Jan 2011

  36. Evacuated tube collectors with German quality standard. www.linuo-ritter-international.com/products/evacuated-tube-collectors/. Accessed 10 Feb 2014

  37. Thermosolar Group. www.thermosolar.de. Accessed 22 March 2014

  38. Ritter Solar product catalog (2004) www.zeussolar.si/images/soncnikolektorji/SONCNI_KOLEKTORJI_KATALOG_2004_nem.pdf. Accessed 22 Jan 2010

  39. Thermal products for water heating and space heating systems. www.consolar.co.uk/documents/Tubo%2012/Tubo%2012%20TDMA07_small_file.pdf. Accessed 6 Jan 2014

  40. Macchi E (2013) The choice of working fluid: the most important step for a successful organic Rankine cycle (and an efficient turbine). In: 2nd international seminar on ORC power systems, Rotterdam

    Google Scholar 

  41. Pei G, Li J, Ji J (2010) Working fluid selection for low temperature solar thermal power generation with two-stage collectors and heat storage units. In: Manyala R (ed) Solar collectors and panels, theory and applications. ISBN:978-953-307-142-8 (InTech)

    Google Scholar 

  42. Liu B-T, Chien K-H, Wang C-C (2004) Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 29:1207–1217

    Article  Google Scholar 

  43. Aljundi IH (2011) Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle. Renew Energy 36:1196–1202

    Article  Google Scholar 

  44. Wei G, Yiwu W, Yuzhang W, Shaoqin S (2011) Heat recovery efficiency analysis of waste heat driven organic Rankine cycle. Acta Energiae Solaris Sinica 32:662–668

    Google Scholar 

  45. Maizza V, Maizza A (1996) Working fluids in non-steady flows for waste energy recovery systems. Appl Therm Eng 16:579–590

    Article  Google Scholar 

  46. Chen H, Goswami DY, Stefanakos EK (2010) A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew Sustain Energy Rev 14:3059–3067

    Article  Google Scholar 

  47. Li J, Pei G, Ji J (2010) Effect of working fluids on the efficiency of low-temperature solar-thermal-electric power generation system. Acta Energiae Solaris Sinica 31(581):587

    Google Scholar 

  48. Yamamoto T, Furuhata T, Arai N, Mori K (2001) Design and testing of the organic Rankine cycle. Energy 26:239–251

    Article  Google Scholar 

  49. Huang Tzu-Chen (2001) Waste heat recovery of organic Rankine cycle using dry fluids. Energy Convers Manage 42:539–553

    Article  Google Scholar 

  50. Hung TC, Wang SK, Kuo CH, Pei BS, Tsai KF (2010) A study of organic working fluids on system efficiency of an ORC using low-grade energy sources. Energy 35:1403–1411

    Article  Google Scholar 

  51. Gozdur AB, Nowak W (2007) Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius-Rankine cycle. Energy 32:344–352

    Article  Google Scholar 

  52. Abie Lakew A, Bolland O (2010) Working fluids for low-temperature heat source. Appl Therm Eng 30:1262–1268

    Google Scholar 

  53. Saleh B, Koglbauer G, Wendland M, Fischer J (2007) Working fluids for low-temperature organic Rankine cycles. Energy 32:1210–1221

    Article  Google Scholar 

  54. Drescher U, Brueggemann D (2007) Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants. Appl Therm Eng 27:223–228

    Article  Google Scholar 

  55. Guo T, Wang HX, Zhang SJ (2011) Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system. Energy Convers Manage 52:2384–2391

    Article  Google Scholar 

  56. Saitoh TS, Kato J, Yamada N (2006) Advanced 3-D CPC solar collector for thermal electric system. Heat Transf-Asian Res 35:323–335

    Article  Google Scholar 

  57. Wang EH, Zhang HG, Fan BY, Ouyang MG, Zhao Y, Mu QH (2013) Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy 36:3406–3418

    Article  Google Scholar 

  58. Tchanche BF, Lambrinos GR, Frangoudakis A, Papadakis G (2010) Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system. Appl Energy 87:1295–1306

    Article  Google Scholar 

  59. Hettiarachchi HDM, Golubovic M, Wore WM, Ikegami Y (2007) Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources. Energy 32:1698–1706

    Article  Google Scholar 

  60. Jian Xu, Dong Ao, Tao Li, Lijun Yu (2011) Working fluid selection of organic Rankine cycle (ORC) for low and medium grade heat source utilization. Energy Conserv Technol 29:204–210

    Google Scholar 

  61. Liu H, He Y, Cheng Z, Cui F (2010) Simulation of parabolic trough solar thermal generation with organic Rankine cycle. J Eng Thermophys 31(1631):1635

    Google Scholar 

  62. Wei DH, Lu XX, Lu Z, Gu JM (2007) Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery. Energy Convers Manage 48:1113–1119

    Article  Google Scholar 

  63. Roy JP, Mishra MK, Misra A (2011) Performance analysis of an organic Rankine cycle with superheating under different heat source temperature conditions. Appl Energy 88:2995–3004

    Article  Google Scholar 

  64. Dai YP, Wang JF, Gao L (2009) Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Convers Manage 50:576–582

    Article  Google Scholar 

  65. Li W, Feng X, Yu LJ, Xu J (2011) Effects of evaporating temperature and internal heat exchanger on organic Rankine cycle. Appl Therm Eng 31:4014–4023

    Article  Google Scholar 

  66. Xu RJ, He YL (2011) A vapor injector-based novel regenerative organic Rankine cycle. Appl Therm Eng 31:1238–1243

    Article  Google Scholar 

  67. Bao JJ, Zhao L, Zhang WZ (2011) A novel auto-cascade low-temperature solar Rankine cycle system for power generation. Sol Energy 85:2710–2719

    Article  Google Scholar 

  68. Badr O, Probert D, Callaghan PO (1986) Multi-vane expanders as prime movers in low-grade energy engines. Proc Inst Mech Eng Part A 200:117–125

    Google Scholar 

  69. James AM, Jon RJ, Cao J, Douglas KP, Richard NC (2009) Experimental testing of gerotor and scroll expanders used in, and energetic and exergetic modeling of, an organic Rankine cycle. J Energy Resoure-ASME 131(201):208

    Google Scholar 

  70. Lemort V, Quoilin S, Cuevas C, Lebrun J (2009) Testing and modeling a scroll expander integrated into an organic Rankine cycle. Appl Therm Eng 29:3094–3102

    Article  Google Scholar 

  71. Quoilin S, Lemort V, Lebrun J (2010) Experimental study and modeling of an organic Rankine cycle using scroll expander. Appl Energy 87:1260–1268

    Article  Google Scholar 

  72. Liu H, Qiu G, Shao Y, Daminabo F, Riffat SB (2010) Preliminary experimental investigations of a biomass-fired micro-scale CHP with organic Rankine cycle. Int J Low-Carbon Technol 2(81):87

    Google Scholar 

  73. Riffat SB, Zhao X (2004a) A novel hybrid heat pipe solar collector/CHPsystem—Part 1: System design and construction. Renew Energy 29:2217–2233

    Google Scholar 

  74. Riffat SB, Zhao X (2004b) A novel hybrid heat-pipe solar collector/CHP system—Part II: Theoretical and experimental investigations. Renew Energy 29:1965–1990

    Google Scholar 

  75. Kane M, Larrain D, Favrat D, Allani Y (2003) Small hybrid solar power system. Energy 28:1427–1443

    Article  Google Scholar 

  76. Peterson RB, Wang H, Herron T (2008) Performance of small-scale regenerative Rankine power cycle employing a scroll expander. Proc Inst Mech Eng Part A: J Power Energy 222(271):282

    Google Scholar 

  77. Manolakos D, Kosmadakis G, Kyritsis S, Papadakis G (2009) Identification of behaviour and evaluation of performance of small scale, low-temperature organic Rankine cycle system coupled with a RO desalination unit. Energy 34:767–774

    Article  Google Scholar 

  78. Pei G, Li J, Ji J (2010) Analysis of low temperature solar thermal electric generation using regenerative organic Rankine cycle. Appl Therm Eng 30:998–1004

    Article  Google Scholar 

  79. Li J, Pei G, Ji J (2010) Optimization of low temperature solar thermal electric generation with organic Rankine cycle in different areas. Appl Energy 87:3355–3365

    Article  Google Scholar 

  80. Al-Sulaiman FA, Dincer I, Hamdullahpur F (2012) Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle. Energy 45:975–985

    Article  Google Scholar 

  81. Wang H, Peterson R, Herron T (2011) Design study of configurations on system COP for a combined ORC (organic Rankine cycle) and VCC (vapor compression cycle). Energy 36:4809–4820

    Article  Google Scholar 

  82. Bu XB, Li HS, Wang LB (2013) Performance analysis and working fluids selection of solar powered organic Rankine-vapor compression ice maker. Sol Energy 95:271–278

    Article  Google Scholar 

  83. Jradi M, Riffat S (2014) Experimental investigation of a biomass-fuelled micro-scale tri-generation system with an organic Rankine cycle and liquid desiccant cooling unit. Energy 71:80–93

    Article  Google Scholar 

  84. Infinity Turbine LLC. www.infinityturbine.com/ORC/ORC_Waste_Heat_Turbine.html. Accessed 16 Oct 2010

  85. Mills D (2004) Advances in solar thermal electric technology. Sol Energy 76:19–31

    Article  Google Scholar 

  86. Buttinger F, Beikircher T, Proll M, Scholkopf W (2010) Development of a new flat stationary evacuated CPC-collector for process heat applications. Sol Energy 84:1166–1174

    Article  Google Scholar 

  87. Jadhav AS, Gudekar AS, Patil RG, Kale DM, Panse SV, Joshi JB (2013) Performance analysis of a novel and cost effective CPC system. Energy Convers Manage 66:56–65

    Article  Google Scholar 

  88. Sagade AA, Shinde NN, Patil PS (2014) Effect of receiver temperature on performance evaluation of silver coated selective surface compound parabolic reflector with top glass cover. Energy Procedia 48:212–222

    Article  Google Scholar 

  89. Liu Z, Tao G, Lu L, Wang Q (2014) A novel all-glass evacuated tubular solar steam generator with simplified CPC. Energy Convers Manage 86:175–185

    Article  Google Scholar 

  90. Fernández A, Dieste JA (2013) Low and medium temperature solar thermal collector based in innovative materials and improved heat exchange performance. Energy Convers Manage 75:118–129

    Article  Google Scholar 

  91. Gang P, Guiqiang L, Xi Z, Jie J, Yuehong S (2012) Experimental study and exergetic analysis of a CPC-type solar water heater system using higher-temperature circulation in winter. Sol Energy 86:1280–1286

    Article  Google Scholar 

  92. Li X, Dai YJ, Li Y, Wang RZ (2013) Comparative study on two novel intermediate temperature CPC solar collectors with the U-shape evacuated tubular absorber. Sol Energy 93:220–234

    Article  Google Scholar 

  93. Yoshioka K, Suzuki A, Saitoh T (1999) Performance evaluation of two-dimensional compound elliptic lens concentrators using a yearly distributed insolation model. Sol Energy Mater Sol Cells 57:9–19

    Article  Google Scholar 

  94. Mallick TK, Eames PC, Hyde TJ, Norton B (2006) Non-concentrating and asymmetric compound parabolic concentrating building facade integrated photovoltaics: an experimental comparison. Sol Energy 80:834–849

    Article  Google Scholar 

  95. Garboushian V, Roubideaux D, Yoon S (1997) Integrated high-concentration PV Nearterm alternative for low-cost large-scale solar electric power. Sol Energy Mater Sol Cells 47:315–323

    Article  Google Scholar 

  96. Marie Curie Actions Incoming International Fellowships, Lens-walled CPC, FP7-PEOPLE-2009-IIF

    Google Scholar 

  97. Su Y, Riffat SB, Pei G (2012) Comparative study on annual solar energy collection of a novel lens-walled compound parabolic concentrator (lens-walled CPC). Sustain Cities Soc 4:35–40

    Article  Google Scholar 

  98. Su Y, Pei G, Riffat SB, Huang H (2012) A novel lens-walled compound parabolic concentrator for photovoltaic applications. J Sol Energy Eng 124:021010–021017

    Article  Google Scholar 

  99. Guiqiang L, Gang P, Yuehong S, jie J, Riffat SB (2013) Experiment and simulation study on the flux distribution of lens-walled compound parabolic concentrator compared with mirror compound parabolic concentrator. Energy 58:398–403

    Article  Google Scholar 

  100. Delgado-Torres AM, García-Rodríguez L (2010) Analysis and optimization of the low temperature solar organic Rankine cycle (ORC). Energy Convers Manage 51:2846–2856

    Article  Google Scholar 

  101. Delgado-Torres AM, García-Rodríguez L (2007a) Preliminary assessment of solar organic Rankine cycles for driving a desalination system. Desalination 216:252−275

    Google Scholar 

  102. Li C, Kosmadakis G, Manolakos D, Stefanakos E, Papadakis G, Goswami DY (2013) Performance investigation of concentrating solar collectors coupled with a transcritical organic Rankine cycle for power and seawater desalination cogeneration. Desalination 318:107–117

    Article  Google Scholar 

  103. Nafey AS, Sharaf MA, García-Rodríguez L (2010) Thermo-economic analysis of a combined solar organic Rankine cycle-reverse osmosis desalination process with different energy recovery configurations. Desalination 261:138–147

    Article  Google Scholar 

  104. Kosmadakis G, Manolakos D, Kyritsis S, Papadakis G (2009) Economic assessment of a two-stage solar organic Rankine cycle for reverse osmosis desalination. Renew Energy 34:1579–1586

    Article  Google Scholar 

  105. Delgado-Torres AM, García-Rodríguez L (2007b) Double cascade organic Rankine cycle for solar-driven reverse osmosis desalination. Desalination 216:306−313

    Google Scholar 

  106. Kosmadakis G, Manolakos D, Papadakis G (2010) Parametric theoretical study of a two-stage solar organic Rankine cycle for RO desalination. Renew Energy 35:989–996

    Article  Google Scholar 

  107. Delgado-Torres Agustín M, García-Rodríguez Lourdes (2012) Design recommendations for solar organic Rankine cycle (ORC)–powered reverse osmosis (RO) desalination. Renew Sustain Energy Rev 16:44–53

    Article  Google Scholar 

  108. Manolakos D, Kosmadakis G, Kyritsis S, Papadakis G (2009) On site experimental evaluation of a low-temperature solar organic Rankine cycle system for RO desalination. Sol Energy 83:646–656

    Article  Google Scholar 

  109. Nafey AS, Sharaf MA (2010) Combined solar organic Rankine cycle with reverse osmosis desalination process: energy, exergy, and cost evaluations. Renew Energy 35:2571–2580

    Article  Google Scholar 

  110. Quoilin S, Orosz M, Hemond H, Lemort V (2011) Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation. Sol Energy 85:955–966

    Article  Google Scholar 

  111. Wang XD, Zhao L, Wang JL, Zhang WZ, Zhao XZ, Wu W (2010) Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa. Sol Energy 84:353–364

    Article  Google Scholar 

  112. He YL, Mei DH, Tao WQ, Yang WW, Liu HL (2012) Simulation of the parabolic trough solar energy generation system with organic Rankine cycle. Appl Energy 97:630–641

    Article  Google Scholar 

  113. Wang J, Yan Z, Zhao P, Dai Y (2014) Off-design performance analysis of a solar-powered organic Rankine cycle. Energy Convers Manage 80:150–157

    Article  Google Scholar 

  114. Dumont O, Declaye S, Quoilin S, Lemort V (2013) Design, modelling and experimentation of a small-scale solar ORC. In: 2nd international seminar on ORC power systems, Rotterdam

    Google Scholar 

  115. Dickes R, Orosz MS, Hemond HF (2013) Non-constant wall thickness scroll expander investigation for micro solar ORC plant. In: 2nd international seminar on ORC power systems, Rotterdam

    Google Scholar 

  116. Zhang Y-Q, Guo H, Wu Y-T, Xia G-D, Ma C-F (2013) Performance study on distributed trough solar power system based on single screw expander and organic Rankine cycle. In: 2nd international seminar on ORC power systems, Rotterdam

    Google Scholar 

  117. Colonna P, Bahamonde S (2013) Solar ORC turbogenerator for green-energy buildings. In: 2nd international seminar on ORC power systems, Rotterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, J. (2015). Gradual Progress in the Organic Rankine Cycle and Solar Thermal Power Generation. In: Structural Optimization and Experimental Investigation of the Organic Rankine Cycle for Solar Thermal Power Generation. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45623-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45623-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45622-4

  • Online ISBN: 978-3-662-45623-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics