Skip to main content

Kinematics of Fluid Flow

  • Chapter
  • First Online:
  • 1572 Accesses

Abstract

The study of kinematics has flourished as a subject where one may consider displacements and motions without imposing any restrictions on them; that is, there is no need to ask whether they are dynamically feasible in the physical world.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Much of the material in this chapter, including the Appendix, follows the treatment in Huilgol and Phan-Thien [1].

References

  1. Huilgol RR, Phan-Thien N (1997) Fluids mechanics of viscoelasticity. Elsevier, Amsterdam

    Google Scholar 

  2. Rivlin RS, Ericksen JL (1955) Stress-deformation relations for isotropic materials. J Ration Mech Anal 4:323–425

    MATH  MathSciNet  Google Scholar 

  3. Noll W (1955) On the continuity of the solid and fluid states. J Ration Mech Anal 4:3–81

    MATH  MathSciNet  Google Scholar 

  4. Huilgol RR (1986) On the material description of a motion associated with a spatially steady velocity field. Zeit angew Math Phys 37:270–273

    Article  MATH  MathSciNet  Google Scholar 

  5. Martin AD, Mizel VJ (1966) Introduction to linear algebra. McGraw-Hill, New York

    Google Scholar 

  6. Frigaard IA, Ryan DP (2004) Flow of a visco-plastic fluid in a channel of slowly varying width. J Non-Newton Fluid Mech 123:67–83

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja R. Huilgol .

Appendix

Appendix

In this Appendix, we list some basic results which are used in this monograph as required.

  1. 1.

    Divergence and curl of vectors. We list below the divergence and curl of vectors in the three coordinate systems.

    Divergence: div \(\mathbf{v} = \nabla \cdot \mathbf{v}.\)

    Cartesian: Physical components: \(u, v, w.\)

    $$\begin{aligned} {\frac{\partial u}{\partial x}} + {\frac{\partial v}{\partial y}} + {\frac{\partial w}{\partial z}}. \end{aligned}$$
    (A2.1)

    Cylindrical: Physical components: \(u, v, w.\)

    $$\begin{aligned} {\frac{\partial u}{\partial r}} + {\frac{u}{r}} + {\frac{1}{r}}{\frac{\partial v}{\partial \theta }} + {\frac{\partial w}{\partial z}}. \end{aligned}$$
    (A2.2)

    Spherical: Physical components: \(u, v, w.\)

    $$\begin{aligned} {\frac{\partial u}{\partial r}} + {\frac{2u}{r}} + {\frac{1}{r}}{\frac{\partial v}{\partial \theta }} + {\frac{v}{r}}\cot \theta + {\frac{1}{r\sin \theta }}{\frac{\partial w}{\partial \phi }}. \end{aligned}$$
    (A2.3)

    curl: \(\pmb {\omega }\) = curl \(\mathbf{v} = \nabla \times \mathbf{v}.\)

    Cartesian:

    $$\begin{aligned} \pmb {\omega } =\ \begin{bmatrix} w_{,y} - v_{,z}\\ u_{,z} - w_{,x}\\ v_{,x} - u_{,y}\end{bmatrix}, \end{aligned}$$
    (A2.4)

    where \(w_{,y} = \partial w/\partial y,\) etc.

    Cylindrical:

    $$\begin{aligned} \pmb {\omega }\ =\ \begin{bmatrix} {\frac{1}{r}}w_{,\theta } - v_{,z}\\ u_{,z} - w_{,r}\\ (v/r) + v_{,r} - (1/r)u_{,\theta } \end{bmatrix}. \end{aligned}$$
    (A2.5)

    Spherical:

    $$\begin{aligned} \pmb {\omega }\ =\ \begin{bmatrix}(1/r)w_{,\theta } + (w/r)\cot \theta - (1/r \sin \theta )v_{,\phi }\\ (1/r \sin \theta )u_{,\phi } - (w/r) - w_{,r}\\ (v/r) + v_{,r} - (1/r)u_{,\theta } \end{bmatrix}. \end{aligned}$$
    (A2.6)
  2. 2.

    Components of the Rivlin-Ericksen Tensor. The physical components of the Rivlin-Ericksen tensor \(\mathbf{A}\) are listed in Cartesian, cylindrical and spherical coordinates below, in terms of the physical components of the velocity field \(\mathbf{v}\).

    Cartesian:

    $$\begin{aligned} \mathbf{A}\ =\ \begin{bmatrix} 2 u_{,x}&(u_{,y} + v_{,x})&(u_{,z} + w_{,x}) \\ \cdot&2 v_{,y}&(v_{,z} + w_{,y})\\ \cdot&\cdot&2 w_{,z}\end{bmatrix}. \end{aligned}$$
    (A2.7)

    Cylindrical:

    $$\begin{aligned} \mathbf{A}\ =\ \begin{bmatrix} 2 u_{,r}&[(1/r)u_{,\theta } + v_{,r} - (v/r)]&(u_{,z} + w_{,r})\\ \cdot&(2/r)(u + v_{,\theta })&(v_{,z} + (1/r) w_{,\theta })\\ \cdot&\cdot&2 w_{,z}\end{bmatrix}. \end{aligned}$$
    (A2.8)

    Spherical:

    $$\begin{aligned} \mathbf{A} = \begin{bmatrix} 2 u_{,r}&[(1/r)u_{,\theta } + v_{,r} - (v/r)]&[(1/r \sin \theta ) u_{,\phi } + w_{,r} - (w/r)]\\ \cdot&[(2/r)(u + v_{,\theta })]&[(1/\sin \theta )v_{,\phi } + w_{,\theta } - w \cot \theta ]/r \\ \cdot&\cdot&2/r \sin \theta \left( w_{,\phi } + u\sin \theta + v\cos \theta \right) \end{bmatrix}. \end{aligned}$$
    (A2.9)

    In (A2.7)–(A2.9), the dots denote the symmetry of the tensor.

  3. 3.

    Components of the Spin Tensor. Finally, we note that the velocity field \(\mathbf{v}\) gives rise to the vorticity \(\pmb {\omega }\) through curl \(\mathbf{v} = \pmb {\omega }.\) Since we know the physical components of \(\pmb {\omega }\) in various coordinates, the physical components of the spin tensor \(\mathbf{W} = \left( \mathbf{L} - \mathbf{L}^T\right) \!{/}2\), where \(\mathbf{L}\) is the velocity gradient, can be found from

    $$\begin{aligned} \mathbf{W} = {\frac{1}{2}} \begin{bmatrix} 0&-\omega _3&\omega _2 \\\omega _3&0&-\omega _1 \\-\omega _2&\omega _1&0 \end{bmatrix} . \end{aligned}$$
    (A2.10)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huilgol, R.R. (2015). Kinematics of Fluid Flow. In: Fluid Mechanics of Viscoplasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45617-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45617-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45616-3

  • Online ISBN: 978-3-662-45617-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics