Skip to main content

Upconversion Nanoparticles for Biosensing

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The last few decades have witnessed the emergence and rapid development of nanoscience and nanotechnology including nanochemistry, nanophysics, nanomedicine, and nanobiomaterials, which allows for the continuous exploration of facile, inexpensive, sensitive, and specific biological analytical techniques by employing nanobioprobes. Recently, upconversion nanoparticles (UCNPs) demonstrated their great potential in many fields of biological science including cells and tissue labeling for bio-imaging, bio-detection, therapy, and multiplexed analysis. In this chapter, we mainly summarize recent advanced UCNPs-based nanosensors with different energy acceptors, including organic dyes, gold nanoparticles, carbon nanomaterials, and MnO2 nanosheets for various analytes (ions, gas molecules, biomolecules, etc.).

Lei Chen and Fan Zhang contributed together to this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tu, D.T., Zheng, W., Liu, Y.S., Zhu, H.M., Chen, X.Y.: Luminescent biodetection based on lanthanide-doped inorganic nanoprobes. Coord. Chem. Rev. 273, 13–19 (2014)

    Google Scholar 

  2. Wang, M., Abbineni, G., Clevenger, A., Mao, C., Xu, S.: Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomed. Nanotechnol. Biol. Med. 7, 710–729 (2011)

    Google Scholar 

  3. Li, C., Lin, J.: Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J. Mater. Chem. 20, 6831–6847 (2010)

    Google Scholar 

  4. Jiang, S., Win, K.Y., Liu, S., Teng, C.P., Zheng, Y., Han, M.-Y.: Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale 5, 3127–3148 (2013)

    Google Scholar 

  5. Li, M., Gou, H.L., Al-Ogaidi, I., Wu, N.Q.: Nanostructured sensors for detection of heavy metals: a review. ACS Sustain. Chem. Eng. 1, 713–723 (2013)

    Google Scholar 

  6. Liu, Y.S., Tu, D.T., Zhu, H.M., Ma, E., Chen, X.Y.: Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection. Nanoscale 5, 1369–1384 (2013)

    Google Scholar 

  7. DaCosta, M.V., Doughan, S., Han, Y., Krull, U.J.: Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review. Anal. Chim. Acta 832, 1–33 (2014)

    Google Scholar 

  8. Chen, G.W., Song, F.L., Xiong, X.Q., Peng, X.J.: Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Ind. Eng. Chem. Res. 52, 11228–11245 (2013)

    Google Scholar 

  9. Wang, F., Liu, X.G.: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976–989 (2009)

    Google Scholar 

  10. Lin, M., Zhao, Y., Wang, S.Q., Liu, M., Duan, Z.F., Chen, Y.M., Li, F., Xu, F., Lu, T.J.: Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications. Biotechnol. Adv. 30, 1551–1561 (2012)

    Google Scholar 

  11. Lu, F., Doane, T.L., Zhu, J.-J., Burda, C.: Gold nanoparticles for diagnostic sensing and therapy. Inorg. Chim. Acta 393, 142–153 (2012)

    Google Scholar 

  12. Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H.: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005)

    Google Scholar 

  13. Chan, W.C.W., Nie, S.M.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998)

    Google Scholar 

  14. Giordano, L., Jovin, T.M., Irie, M., Jares-Erijman, E.A.: Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J. Am. Chem. Soc. 124, 7481–7489 (2002)

    Google Scholar 

  15. Zhang, C.Y., Johnson, L.W.: Quantum-dot-based nanosensor for RRE IIB RNA-Rev peptide interaction assay. J. Am. Chem. Soc. 128, 5324–5325 (2006)

    Google Scholar 

  16. Gnach, A., Bednarkiewicz, A.: Lanthanide-doped up-converting nanoparticles: merits and challenges. Nano Today 7, 532–563 (2012)

    Google Scholar 

  17. Wang, F., Banerjee, D., Liu, Y.S., Chen, X.Y., Liu, X.G.: Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135, 1839–1854 (2010)

    Google Scholar 

  18. Hardman, R.: A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 165–172 (2006)

    Google Scholar 

  19. Auffan, M., Rose, J., Bottero, J.Y., Lowry, G.V., Jolivet, J.P., Wiesner, M.R.: Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4, 634–641 (2009)

    Google Scholar 

  20. Shen, J., Sun, L.-D., Yan, C.-H.: Luminescent rare earth nanomaterials for bioprobe applications. Dalton Trans. 5687–5697 (2008)

    Google Scholar 

  21. Wang, J.S., Wu, L., Ren, J.S., Qu, X.G.: Visual detection of telomerase activity with a tunable dynamic range by using a gold nanoparticle probe-based hybridization protection strategy. Nanoscale 6, 1661–1666 (2014)

    Google Scholar 

  22. Zhang, C., Sun, L.D., Zhang, Y.W., Yan, C.H.: Rare earth upconversion nanophosphors: synthesis, functionalization and application as biolabels and energy transfer donors. J. Rare Earths 28, 807–819 (2010)

    Google Scholar 

  23. Zhou, J., Liu, Z., Li, F.Y.: Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 41, 1323–1349 (2012)

    Google Scholar 

  24. Liu, J.B., Yang, X.H., He, X.X., Wang, K.M., Wang, Q., Guo, Q.P., Shi, H., Huang, J., Huo, X.Q.: Fluorescent nanoparticles for chemical and biological sensing. Sci. China Chem 54, 1157–1176 (2011)

    Google Scholar 

  25. Xu, C.T., Svensson, N., Axelsson, J., Svenmarker, P., Somesfalean, G., Chen, G., Liang, H., Liu, H., Zhang, Z., Andersson-Engels, S.: Autofluorescence insensitive imaging using upconverting nanocrystals in scattering media. Appl. Phys. Lett. 93, 171103–171106 (2008)

    Google Scholar 

  26. Chen, J., Zhao, J.X.: Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. Sensors 12, 2414–2435 (2012)

    Google Scholar 

  27. Feng, W., Han, C.M., Li, F.Y.: Upconversion-nanophosphor-based functional nanocomposites. Adv. Mater. 25, 5287–5303 (2013)

    Google Scholar 

  28. Sapsford, K.E., Berti, L., Medintz, I.L.: Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angew. Chem. Int. Ed. 45, 4562–4588 (2006)

    Google Scholar 

  29. Ray, P.C., Fan, Z., Crouch, R.A., Sinha, S.S., Pramanik, A.: Nanoscopic optical rulers beyond the FRET distance limit: fundamentals and applications. Chem. Soc. Rev. 43, 6370–6404 (2014)

    Google Scholar 

  30. Yuan, L., Lin, W.Y., Zheng, K.B., Zhu, S.S.: FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Acc. Chem. Res. 46, 1462–1473 (2013)

    Google Scholar 

  31. Zhang, P., Rogelj, S., Nguyen, K., Wheeler, D.: Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles. J. Am. Chem. Soc. 128, 12410–12411 (2006)

    Google Scholar 

  32. Liu, J.L., Liu, Y., Liu, Q., Li, C.Y., Sun, L.N., Li, F.Y.: Iridium(III) complex-coated nanosystem for ratiometric upconversion luminescence bioimaging of cyanide anions. J. Am. Chem. Soc. 133, 15276–15279 (2011)

    Google Scholar 

  33. Wang, L.Y., Yan, R.X., Hao, Z.Y., Wang, L., Zeng, J.H., Bao, J., Wang, X., Peng, Q., Li, Y.D.: Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 44, 6054–6057 (2005)

    Google Scholar 

  34. Yuan, F., Chen, H., Xu, J., Zhang, Y., Wu, Y., Wang, L.: Aptamer-based luminescence energy transfer from near-infrared-to-near-infrared upconverting nanoparticles to gold nanorods and its application for the detection of thrombin. Chem. Eur. J. 20, 1–8 (2014)

    Google Scholar 

  35. Yao, L.M., Zhou, J., Liu, J.L., Feng, W., Li, F.Y.: Iridium-complex-modified upconversion nanophosphors for effective LRET detection of cyanide anions in pure water. Adv. Funct. Mater. 22, 2667–2672 (2012)

    Google Scholar 

  36. De, M., Ghosh, P.S., Rotello, V.M.: Applications of nanoparticles in biology. Adv. Mater. 20, 4225–4241 (2008)

    Google Scholar 

  37. Mayilo, S., Kloster, M.A., Wunderlich, M., Lutich, A., Klar, T.A., Nichtl, A., Kürzinger, K., Stefani, F.D., Feldmann, J.: Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Lett. 9, 4558–4563 (2009)

    Google Scholar 

  38. Pons, T., Medintz, I.L., Sapsford, K.E., Higashiya, S., Grimes, A.F., English, D.S., Mattoussi, H.: On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. Nano Lett. 7, 3157–3164 (2007)

    Google Scholar 

  39. Li, M., Cushing, S.K., Wang, Q., Shi, X., Hornak, L.A., Hong, Z., Wu, N.: Size-dependent energy transfer between CdSe/ZnS quantum dots and gold nanoparticles. J. Phys. Chem. Lett. 2, 2125–2129 (2011)

    Google Scholar 

  40. Saha, K., Agasti, S.S., Kim, C., Li, X.N., Rotello, V.M.: Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2012)

    Google Scholar 

  41. Zhang, S., Wang, J., Xu, W., Chen, B.T., Yu, W., Xu, L., Song, H.W.: Fluorescence resonance energy transfer between NaYF4:Yb, Tm upconversion nanoparticles and gold nanorods: near-infrared responsive biosensor for streptavidin. J. Lumin. 147, 278–283 (2014)

    Google Scholar 

  42. Huang, Y.-F., Chang, H.-T., Tan, W.: Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal. Chem. 80, 567–572 (2008)

    Google Scholar 

  43. Chen, C.-C., Lin, Y.-P., Wang, C.-W., Tzeng, H.-C., Wu, C.-H., Chen, Y.-C., Chen, C.-P., Chen, L.-C., Wu, Y.-C.: DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J. Am. Chem. Soc. 128, 3709–3715 (2006)

    Google Scholar 

  44. Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009)

    Google Scholar 

  45. Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., Firsov, A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Google Scholar 

  46. Mohanty, N., Berry, V.: Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469–4476 (2008)

    Google Scholar 

  47. Zhang, M., Yin, B.-C., Tan, W., Ye, B.-C.: A versatile graphene-based fluorescence “on/off” switch for multiplex detection of various targets. Biosens. Bioelectron. 26, 3260–3265 (2011)

    Google Scholar 

  48. Chen, K., Lu, G., Chang, J., Mao, S., Yu, K., Cui, S., Chen, J.: Hg(II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles. Anal. Chem. 84, 4057–4062 (2012)

    Google Scholar 

  49. Chang, H., Tang, L., Wang, Y., Jiang, J., Li, J.: Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem. 82, 2341–2346 (2010)

    Google Scholar 

  50. Li, J.L., Bao, H.C., Hou, X.L., Sun, L., Wang, X.G., Gu, M.: Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy. Angew. Chem. Int. Ed. 51, 1830–1834 (2012)

    Google Scholar 

  51. Wen, Y.Q., Xing, F.F., He, S.J., Song, S.P., Wang, L.H., Long, Y.T., Li, D., Fan, C.H.: A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem. Commun. 46, 2596–2598 (2010)

    Google Scholar 

  52. Swathi, R., Sebastian, K.: Long range resonance energy transfer from a dye molecule to graphene has (distance)—4 dependence. J. Chem. Phys. 130, 086101 (2009)

    Google Scholar 

  53. Swathi, R., Sebastian, K.: Resonance energy transfer from a dye molecule to graphene. J. Chem. Phys. 129, 054703 (2008)

    Google Scholar 

  54. Zhang, C.L., Yuan, Y.X., Zhang, S.M., Wang, Y.H., Liu, Z.H.: Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide. Angew. Chem. Int. Ed. 50, 6851–6854 (2011)

    Google Scholar 

  55. Li, M., Zhou, X., Guo, S., Wu, N.: Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens. Bioelectron. 43, 69–74 (2013)

    Google Scholar 

  56. Lu, C.H., Yang, H.H., Zhu, C.L., Chen, X., Chen, G.N.: A graphene platform for sensing biomolecules. Angew. Chem. 121, 4879–4881 (2009)

    Google Scholar 

  57. He, S., Song, B., Li, D., Zhu, C., Qi, W., Wen, Y., Wang, L., Song, S., Fang, H., Fan, C.: A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 20, 453–459 (2010)

    Google Scholar 

  58. Zhao, X.-H., Kong, R.-M., Zhang, X.-B., Meng, H.-M., Liu, W.-N., Tan, W., Shen, G.-L., Yu, R.-Q.: Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity. Anal. Chem. 83, 5062–5066 (2011)

    Google Scholar 

  59. Wang, Y.H., Shen, P., Li, C.Y., Wang, Y.Y., Liu, Z.H.: Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood. Anal. Chem. 84, 1466–1473 (2012)

    Google Scholar 

  60. Wang, Y.H., Wu, Z.J., Liu, Z.H.: Upconversion fluorescence resonance energy transfer biosensor with aromatic polymer nanospheres as the lable-free energy acceptor. Anal. Chem. 85, 258–264 (2013)

    Google Scholar 

  61. Deng, R.R., Xie, X.J., Vendrell, M., Chang, Y.T., Liu, X.G.: Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J. Am. Chem. Soc. 133, 20168–20171 (2011)

    Google Scholar 

  62. Wu, S.J., Duan, N., Ma, X.Y., Xia, Y., Wang, H.G., Wang, Z.P., Zhang, Q.: Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal. Chem. 84, 6263–6270 (2012)

    Google Scholar 

  63. Liu, C.H., Wang, Z., Jia, H.X., Li, Z.P.: Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform. Chem. Commun. 47, 4661–4663 (2011)

    Google Scholar 

  64. Li, H., Sun, D.E., Liu, Y.J., Liu, Z.H.: An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens. Bioelectron. 55, 149–156 (2014)

    Google Scholar 

  65. Wu, Y.M., Cen, Y., Huang, L.J., Yu, R.Q., Chu, X.: Upconversion fluorescence resonance energy transfer biosensor for sensitive detection of human immunodeficiency virus antibodies in human serum. Chem. Commun. 50, 4759–4762 (2014)

    Google Scholar 

  66. Wei, W., He, T.C., Teng, X., Wu, S.X., Ma, L., Zhang, H., Ma, J., Yang, Y.H., Chen, H.Y., Han, Y., Sun, H.D., Huang, L.: Nanocomposites of graphene oxide and upconversion rare-earth nanocrystals with superior optical limiting performance. Small 8, 2271–2276 (2012)

    Google Scholar 

  67. Wang, Y.H., Bao, L., Liu, Z.H., Pang, D.W.: Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal. Chem. 83, 8130–8137 (2011)

    Google Scholar 

  68. Liu, Y.S., Tu, D.T., Zhu, H.M., Chen, X.Y.: Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 42, 6924–6958 (2013)

    Google Scholar 

  69. Yuan, Y.X., Wu, S.F., Shu, F., Liu, Z.H.: An MnO2 nanosheet as a label-free nanoplatform for homogeneous biosensing. Chem. Commun. 50, 1095–1097 (2014)

    Google Scholar 

  70. Omomo, Y., Sasaki, T., Wang, L., Watanabe, M.: Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 125, 3568–3575 (2003)

    Google Scholar 

  71. Chen, G., Qiu, H., Prasad, P.N., Chen, X.: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014)

    Google Scholar 

  72. Kumar, M., Zhang, P.: Highly sensitive and selective label-free optical detection of mercuric ions using photon upconverting nanoparticles. Biosens. Bioelectron. 25, 2431–2435 (2010)

    Google Scholar 

  73. Liu, Q., Peng, J.J., Sun, L.N., Li, F.Y.: High-efficiency upconversion luminescent sensing and bioimaging of Hg(II) by chromophoric ruthenium complex-assembled nanophosphors. ACS Nano 5, 8040–8048 (2011)

    Google Scholar 

  74. Li, C.X., Liu, J.L., Alonso, S., Li, F.Y., Zhang, Y.: Upconversion nanoparticles for sensitive and in-depth detection of Cu2+ ions. Nanoscale 4, 6065–6071 (2012)

    Google Scholar 

  75. Zhang, J., Li, B., Zhang, L.M., Jiang, H.: An optical sensor for Cu(II) detection with upconverting luminescent nanoparticles as an excitation source. Chem. Commun. 48, 4860–4862 (2012)

    Google Scholar 

  76. Liu, Y., Chen, M., Cao, T.Y., Sun, Y., Li, C.Y., Liu, Q., Yang, T.S., Yao, L.M., Feng, W., Li, F.Y.: A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J. Am. Chem. Soc. 135, 9869–9876 (2013)

    Google Scholar 

  77. Chen, H.Q., Yuan, F., Wang, S.Z., Xu, J., Zhang, Y.Y., Wang, L.: Near-infrared to near-infrared upconverting NaYF4:Yb3+, Tm3+ nanoparticles-aptamer-Au nanorods light resonance energy transfer system for the detection of mercuric(II) ions in solution. Analyst 138, 2392–2397 (2013)

    Google Scholar 

  78. Li, H., Wang, L.Y.: NaYF4:Yb3+/Er3+ nanoparticle-based upconversion luminescence resonance energy transfer sensor for mercury(II) quantification. Analyst 138, 1589–1595 (2013)

    Google Scholar 

  79. Wang, M.N., An, X.J., Gao, J.: An “off-on” Hg(II) sensor excited by near-infrared to visible upconversion nanorods. J. Lumin. 144, 91–97 (2013)

    Google Scholar 

  80. Li, X.H., Wu, Y.Q., Liu, Y., Zou, X.M., Yao, L.M., Li, F.Y., Feng, W.: Cyclometallated ruthenium complex-modified upconversion nanophosphors for selective detection of Hg2+ ions in water. Nanoscale 6, 1020–1028 (2014)

    Google Scholar 

  81. Wu, S., Duan, N., Shi, Z., Fang, C., Wang, Z.: Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+. Talanta 128, 327–336 (2014)

    Google Scholar 

  82. Chen, H.Q., Ren, J.C.: Sensitive determination of chromium(VI) based on the inner filter effect of upconversion luminescent nanoparticles (NaYF4:Yb3+, Er3+). Talanta 99, 404–408 (2012)

    Google Scholar 

  83. Liu, B.X., Tan, H.L., Chen, Y.: Upconversion nanoparticle-based fluorescence resonance energy transfer assay for Cr(III) ions in urine. Anal. Chim. Acta 761, 178–185 (2013)

    Google Scholar 

  84. Ding, Y.J., Zhu, H., Zhang, X.X., Zhu, J.J., Burda, C.: Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing. Chem. Commun. 49, 7797–7799 (2013)

    Google Scholar 

  85. Xie, L.X., Qin, Y., Chen, H.Y.: Direct fluorescent measurement of blood potassium with polymeric optical sensors based on upconverting nanomaterials. Anal. Chem. 85, 2617–2622 (2013)

    Google Scholar 

  86. Achatz, D.E., Ali, R., Wolfbeis, O.S.: Luminescent chemical sensing, biosensing, and screening using upconverting nanoparticles. Lumin. Appl. Sens. Sci. 300, 29–50 (2011)

    Google Scholar 

  87. Achatz, D.E., Meier, R.J., Fischer, L.H., Wolfbeis, O.S.: Luminescent sensing of oxygen using a quenchable probe and upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 260–263 (2011)

    Google Scholar 

  88. Liu, L., Li, B., Ying, J., Wu, X., Zhao, H., Ren, X., Zhu, D., Su, Z.: Synthesis and characterization of a new trifunctional magnetic–photoluminescent–oxygen-sensing nanomaterial. Nanotechnology 19, 495709 (2008)

    Google Scholar 

  89. Sun, L.-N., Peng, H., Stich, M.I., Achatz, D., Wolfbeis, O.S.: pH sensor based on upconverting luminescent lanthanide nanorods. Chem. Commun. 5000–5002 (2009)

    Google Scholar 

  90. Ali, R., Saleh, S.M., Meier, R.J., Azab, H.A., Abdelgawad, I.I., Wolfbeis, O.S.: Upconverting nanoparticle based optical sensor for carbon dioxide. Sens. Actuators B Chem. 150, 126–131 (2010)

    Google Scholar 

  91. Mader, H.S., Wolfbeis, O.S.: Optical ammonia sensor based on upconverting luminescent nanoparticles. Anal. Chem. 82, 5002–5004 (2010)

    Google Scholar 

  92. Chen, Z.G., Chen, H.L., Hu, H., Yu, M.X., Li, F.Y., Zhang, Q., Zhou, Z.G., Yi, T., Huang, C.H.: Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 130, 3023 (2008)

    Google Scholar 

  93. Kumar, M., Guo, Y., Zhang, P.: Highly sensitive and selective oligonucleotide sensor for sickle cell disease gene using photon upconverting nanoparticles. Biosens. Bioelectron. 24, 1522–1526 (2009)

    Google Scholar 

  94. Cen, Y., Wu, Y., Kong, X., Wu, S., Yu, R., Chu, X.: Phospholipid-modified upconversion nanoprobe for ratiometric fluorescence detection and imaging of phospholipase D in cell lysate and in living cells. Anal. Chem. 86, 7119–7127 (2014)

    Google Scholar 

  95. Kumar, M., Zhang, P.: Highly sensitive and selective label-free optical detection of DNA hybridization based on photon upconverting nanoparticles. Langmuir 25, 6024–6027 (2009)

    Google Scholar 

  96. Liu, J.L., Cheng, J.T., Zhang, Y.: Upconversion nanoparticle based LRET system for sensitive detection of MRSA DNA sequence. Biosens. Bioelectron. 43, 252–256 (2013)

    Google Scholar 

  97. Wang, M., Hou, W., Mi, C.C., Wang, W.X., Xu, Z.R., Teng, H.H., Mao, C.B., Xu, S.K.: Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles. Anal. Chem. 81, 8783–8789 (2009)

    Google Scholar 

  98. Zhang, J.P., Mi, C.C., Wu, H.Y., Huang, H.Q., Mao, C.B., Xu, S.K.: Synthesis of NaYF4:Yb/Er/Gd up-conversion luminescent nanoparticles and luminescence resonance energy transfer-based protein detection. Anal. Biochem. 421, 673–679 (2012)

    Google Scholar 

  99. Chen, H.Q., Yuan, F., Wang, S.Z., Xu, J., Zhang, Y.Y., Wang, L.: Aptamer-based sensing for thrombin in red region via fluorescence resonant energy transfer between NaYF4:Yb, Er upconversion nanoparticles and gold nanorods. Biosens. Bioelectron. 48, 19–25 (2013)

    Google Scholar 

  100. Zhai, Y.L., Zhu, C.Z., Ren, J.T., Wang, E.K., Dong, S.J.: Multifunctional polyoxometalates-modified upconversion nanoparticles: integration of electrochromic devices and antioxidants detection. Chem. Commun. 49, 2400–2402 (2013)

    Google Scholar 

  101. Peng, J.H., Wang, Y.H., Wang, J.L., Zhou, X., Liu, Z.H.: A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer. Biosens. Bioelectron. 28, 414–420 (2011)

    Google Scholar 

  102. Zhang, Y., Tang, Y.R., Liu, X., Zhang, L.C., Lv, Y.: A highly sensitive upconverting phosphors-based off-on probe for the detection of glutathione. Sens. Actuators B Chem. 185, 363–369 (2013)

    Google Scholar 

  103. Wang, L.Y., Li, Y.D.: Green upconversion nanocrystals for DNA detection. Chem. Commun. 2557–2559 (2006)

    Google Scholar 

  104. Wu, S.J., Duan, N., Shi, Z., Fang, C.C., Wang, Z.P.: Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal. Chem. 86, 3100–3107 (2014)

    Google Scholar 

  105. Wu, S.J., Duan, N., Wang, Z.P., Wang, H.X.: Aptamer-functionalized magnetic nanoparticle-based bioassay for the detection of ochratoxin a using upconversion nanoparticles as labels. Analyst 136, 2306–2314 (2011)

    Google Scholar 

  106. Yang, W.X., Wang, Y.C., Chang, L.J., Liu, C.H., Bai, J., Li, Z.P.: Highly sensitive detection of protein kinase activity using upconversion luminescent nanoparticles. RSC Adv. 4, 14546–14549 (2014)

    Google Scholar 

  107. Wang, G.F., Peng, Q., Li, Y.D.: Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 44, 322–332 (2011)

    Google Scholar 

  108. Saleh, S.M., Ali, R., Wolfbeis, O.S.: Quenching of the luminescence of upconverting luminescent nanoparticles by heavy metal ions. Chem. Eur. J. 17, 14611–14617 (2011)

    Google Scholar 

  109. Chen, J.G., Chen, H.Q., Zhou, C.L., Xu, J., Yuan, F., Wang, L.: An efficient upconversion luminescence energy transfer system for determination of trace amounts of nitrite based on NaYF4:Yb3+, Er3+ as donor. Anal. Chim. Acta 713, 111–114 (2012)

    Google Scholar 

  110. He, X.X., Li, Z.X., Jia, X.K., Wang, K.M., Yin, J.J.: A highly selective sandwich-type FRET assay for ATP detection based on silica coated photon upconverting nanoparticles and split aptamer. Talanta 111, 105–110 (2013)

    Google Scholar 

  111. Arppe, R., Nareoja, T., Nylund, S., Mattsson, L., Koho, S., Rosenholm, J.M., Soukka, T., Schaferling, M.: Photon upconversion sensitized nanoprobes for sensing and imaging of pH. Nanoscale 6, 6837–6843 (2014)

    Google Scholar 

  112. Harvey, P., Oakland, C., Driscoll, M.D., Hay, S., Natrajan, L.S.: Ratiometric detection of enzyme turnover and flavin reduction using rare-earth upconverting phosphors. Dalton Trans. 43, 5265–5268 (2014)

    Google Scholar 

  113. Hazra, C., Adusumalli, V.N.K.B., Mahalingam, V.: 3,5-dinitrobenzoic acid-capped upconverting nanocrystals for the selective detection of melamine. ACS Appl. Mat. Interfaces 6, 7833–7839 (2014)

    Google Scholar 

  114. Liu, C.H., Chang, L.J., Wang, H.H., Bai, J., Ren, W., Li, Z.P.: Upconversion nanophosphor: an efficient phosphopeptides-recognizing matrix and luminescence resonance energy transfer donor for robust detection of protein kinase activity. Anal. Chem. 86, 6095–6102 (2014)

    Google Scholar 

  115. Liu, J., Liu, Y., Bu, W., Bu, J., Sun, Y., Du, J., Shi, J.: Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J. Am. Chem. Soc. 136, 9701–9709 (2014)

    Google Scholar 

  116. Ma, Y.X., Wang, L.Y.: Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives. Talanta 120, 100–105 (2014)

    Google Scholar 

  117. Zhao, L., Peng, J., Chen, M., Liu, Y., Yao, L., Feng, W., Li, F.: Yolk-shell upconversion nanocomposites for LRET sensing of cysteine/homocysteine. ACS Appl. Mat. Interfaces 6, 11190–11197 (2014)

    Google Scholar 

  118. Zhou, Y., Pei, W., Wang, C., Zhu, J., Wu, J., Yan, Q., Huang, L., Huang, W., Yao, C., Loo, J.S.C.: Rhodamine-modified upconversion nanophosphors for ratiometric detection of hypochlorous acid in aqueous solution and living cells. Small 10, 3560–3567 (2014)

    Google Scholar 

  119. Zhang, S.Z., Sun, L.D., Tian, H., Liu, Y., Wang, J.F., Yan, C.H.: Reversible luminescence switching of NaYF4:Yb,Er nanoparticles with controlled assembly of gold nanoparticles. Chem. Commun. 2547–2549 (2009)

    Google Scholar 

  120. Chen, H.Q., Yuan, F., Wang, L.: Simple and sensitive turn-on luminescent detection of biothiols based on energy transfer between green-emitting upconversion nanocrystals and gold nanoparticles. Anal. Methods 5, 2873–2879 (2013)

    Google Scholar 

  121. Lin, F.B., Yin, B.D., Li, C.Z., Deng, J.H., Fan, X.Y., Yi, Y.H., Liu, C., Li, H.T., Zhang, Y.Y., Yao, S.Z.: Fluorescence resonance energy transfer aptasensor for platelet-derived growth factor detection based on upconversion nanoparticles in 30 % blood serum. Anal. Methods 5, 699–704 (2013)

    Google Scholar 

  122. Tu, N.N., Wang, L.Y.: Surface plasmon resonance enhanced upconversion luminescence in aqueous media for TNT selective detection. Chem. Commun. 49, 6319–6321 (2013)

    Google Scholar 

  123. Wang, Z.J., Wu, L.N., Shen, B.Z., Jiang, Z.H.: Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4:Yb,Ho nanocrystals and gold nanoparticles. Talanta 114, 124–130 (2013)

    Google Scholar 

  124. Wu, S.J., Duan, N., Li, X.L., Tan, G.L., Ma, X.Y., Xia, Y., Wang, Z.P., Wang, H.X.: Homogenous detection of fumonisin B-1 with a molecular beacon based on fluorescence resonance energy transfer between NaYF4:Yb,Ho upconversion nanoparticles and gold nanoparticles. Talanta 116, 611–618 (2013)

    Google Scholar 

  125. Zeng, L.Y., Yuan, Y.X., Shen, P., Wong, K.Y., Liu, Z.H.: Graphitic carbon-nanoparticle-based single-label nanobeacons. Chem. Eur. J. 19, 8063–8067 (2013)

    Google Scholar 

  126. Wang, Y.H., Gao, D.Y., Zhang, P.F., Gong, P., Chen, C., Gao, G.H., Cai, L.T.: A near infrared fluorescence resonance energy transfer based aptamer biosensor for insulin detection in human plasma. Chem. Commun. 50, 811–813 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, F. (2015). Upconversion Nanoparticles for Biosensing. In: Photon Upconversion Nanomaterials. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45597-5_8

Download citation

Publish with us

Policies and ethics