Skip to main content

Upconversion Nanoparticles for Biomedical Imaging

  • Chapter
  • First Online:
Photon Upconversion Nanomaterials

Part of the book series: Nanostructure Science and Technology ((NST))

  • 6390 Accesses

Abstract

Rare-earth upconversion (UC) nanoparticles, when excited by continuous-wave near-infrared (NIR) light, exhibit a unique narrow photoluminescence with higher energy. Such special UC luminescence makes UCNPs promising as bio-imaging probes with attractive features, such as no auto-fluorescence from biological samples and deep penetration depth. As a result, UCNPs have emerged as novel imaging agents for small animals. In this chapter, recent reports regarding the biomedical imaging investigation using UCNPs are summarized. The applications of UCNPs for small-animal imaging, including optical imaging, optical tomography, and multimodal imaging are reviewed in detail. The recent techniques for upconversion imaging and toxicity assessment of UCNPs are also presented. Finally, we discuss the challenges and opportunities in the development of UCNPs for biomedical imaging.

Rui Wang and Fan Zhang contributed together to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galperin, A., Margel, D., Baniel, J., Dank, G., Biton, H., Margel, S.: Radiopaque iodinated polymeric nanoparticles for X-ray imaging applications. Biomaterials 28, 4461–4468 (2007)

    Google Scholar 

  2. Bar-Shalom, R., Yefremov, N., Guralnik, L., Gaitini, D., Frenkel, A., Kuten, A., Altman, H., Keidar, Z., Israel, O.: Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic Imaging and patient management. J. Nucl. Med. 44, 1200–1209 (2003)

    Google Scholar 

  3. Beyer, T., Townsend, D.W., Brun, T., Kinahan, P.E., Charron, M., Roddy, R., Jerin, J., Young, J., Byars, L., Nutt, R.: A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 41, 1369–1379 (2000)

    Google Scholar 

  4. Buck, A.K., Nekolla, S., Ziegler, S., Beer, A., Krause, B.J., Herrmann, K., Scheidhauer, K., Wester, H.J., Rummeny, E.J., Schwaiger, M., Drzezga, A.: SPECT/CT. J. Nucl. Med. 49, 1305–1319 (2008)

    Google Scholar 

  5. Pichler, B.J., Wehrl, H.F., Judenhofer, M.S.: Latest advances in molecular imaging instrumentation. J. Nucl. Med. 49, 5S–23S (2008)

    Google Scholar 

  6. Strauss, L.G., Conti, P.S.: The applications of pet in clinical oncology. J. Nucl. Med. 32, 623–648 (1991)

    Google Scholar 

  7. Degrado, T.R., Turkington, T.G., Williams, J.J., Stearns, C.W., Hoffman, J.M., Coleman, R.E.: Performance-characteristics of a whole-body pet scanner. J. Nucl. Med. 35, 1398–1406 (1994)

    Google Scholar 

  8. Pichler, B.J., Kolb, A., Nagele, T., Schlemmer, H.P.: PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J. Nucl. Med. 51, 333–336 (2010)

    Google Scholar 

  9. Merkel, O.M., Librizzi, D., Pfestroff, A., Schurrat, T., Behe, M., Kissel, T.: In vivo SPECT and real-time gamma camera imaging of biodistribution and pharmacokinetics of siRNA delivery using an optimized radiolabeling and purification procedure. Bioconjug. Chem. 20, 174–182 (2009)

    Google Scholar 

  10. Dirksen, A., Langereis, S., de Waal, B.F.M., van Genderen, M.H.P., Hackeng, T.M., Meijer, E.W.: A supramolecular approach to multivalent target-specific MRI contrast agents for angiogenesis. Chem. Commun. 22, 2811–2813 (2005)

    Google Scholar 

  11. Bridot, J.L., Faure, A.C., Laurent, S., Riviere, C., Billotey, C., Hiba, B., Janier, M., Josserand, V., Coll, J.L., Vander Elst, L., Muller, R., Roux, S., Perriat, P., Tillement, O.: Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc. 129, 5076–5084 (2007)

    Google Scholar 

  12. Liu, J.A., Bu, W.B., Zhang, S.J., Chen, F., Xing, H.Y., Pan, L.M., Zhou, L.P., Peng, W.J., Shi, J.L.: Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging. Chem. Eur. J. 18, 2335–2341 (2012)

    Google Scholar 

  13. Adams, S., Baum, R.P., Stuckensen, T., Bitter, K., Hor, G.: Prospective comparison of F-18-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. Eur. J. Nucl. Med. 25, 1255–1260 (1998)

    Google Scholar 

  14. Ntziachristos, V., Ripoll, J., Wang, L.H.V., Weissleder, R.: Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23, 313–320 (2005)

    Google Scholar 

  15. Frangioni, J.V.: In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003)

    Google Scholar 

  16. Weissleder, R.: A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316–317 (2001)

    Google Scholar 

  17. Pansare, V.J., Hejazi, S., Faenza, W.J., Prud’homme, R.K.: Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers. Chem. Mater. 24, 812–827 (2012)

    Google Scholar 

  18. Chance, B.: Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Adv. Opt. Biopsy Opt. Mammogr. 838, 29–45 (1998)

    Google Scholar 

  19. Ntziachristos, V., Bremer, C., Weissleder, R.: Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13, 195–208 (2003)

    Google Scholar 

  20. Bashkatov, A.N., Genina, E.A., Kochubey, V.I., Tuchin, V.V.: Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 38, 2543–2555 (2005)

    Google Scholar 

  21. Welsher, K., Sherlock, S.P., Dai, H.J.: Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. 108, 8943–8948 (2011)

    Google Scholar 

  22. Weissleder, R., Tung, C.H., Mahmood, U., Bogdanov, A.: In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999)

    Google Scholar 

  23. Gao, X.H., Cui, Y.Y., Levenson, R.M., Chung, L.W.K., Nie, S.M.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004)

    Google Scholar 

  24. Lim, Y.T., Kim, S., Nakayama, A., Stott, N.E., Bawendi, M.G., Frangioni, J.V.: Selection of quantum dot wavelengths for biomedical assays and imaging. Molecular imaging 2, 50–64 (2003)

    Google Scholar 

  25. Chen, R.J., Bangsaruntip, S., Drouvalakis, K.A., Kam, N.W.S., Shim, M., Li, Y.M., Kim, W., Utz, P.J., Dai, H.J.: Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. 100, 4984–4989 (2003)

    Google Scholar 

  26. Smith, A.M., Mancini, M.C., Nie, S.M.: Bioimaging second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009)

    Google Scholar 

  27. Yuan, A., Wu, J.H., Tang, X.L., Zhao, L.L., Xu, F., Hu, Y.Q.: Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J. Pharm. Sci. 102, 6–28 (2013)

    Google Scholar 

  28. Khlebtsov, N.G., Dykman, L.A.: Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transfer 111, 1–35 (2010)

    Google Scholar 

  29. Wang, R., Zhang, F.: NIR luminescent nanomaterials for biomedical imaging. J. Mater. Chem. B 2, 2422–2443 (2014)

    Google Scholar 

  30. Du, Y.P., Xu, B., Fu, T., Cai, M., Li, F., Zhang, Y., Wang, Q.B.: Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 132, 1470–1471 (2010)

    Google Scholar 

  31. Liu, Z., Cai, W., He, L., Nakayama, N., Chen, K., Sun, X., Chen, X., Dai, H.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2, 47–52 (2006)

    Google Scholar 

  32. Rogach, A.L., Eychmüller, A., Hickey, S.G., Kershaw, S.V.: Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. Small 3, 536–557 (2007)

    Google Scholar 

  33. Hardman, R.: A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Persp. 114, 165–172 (2006)

    Google Scholar 

  34. Naczynski, D.J., Tan, M.C., Zevon, M., Wall, B., Kohl, J., Kulesa, A., Chen, S., Roth, C.M., Riman, R.E., Moghe, P.V.: Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 4, 2199 (2013)

    Google Scholar 

  35. Chen, G.Y., Qju, H.L., Prasad, P.N., Chen, X.Y.: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014)

    Google Scholar 

  36. Feng, W., Zhu, X.J., Li, F.Y.: Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications. NPG Asia Mater. 5, e75 (2013)

    Google Scholar 

  37. Gorris, H.H., Wolfbeis, O.S.: Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem. Int. Ed. 52, 3584–3600 (2013)

    Google Scholar 

  38. Gu, Z.J., Yan, L., Tian, G., Li, S.J., Chai, Z.F., Zhao, Y.L.: Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater. 25, 3758–3779 (2013)

    Google Scholar 

  39. Haase, M., Schafer, H.: Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011)

    Google Scholar 

  40. Wang, F., Liu, X.G.: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976–989 (2009)

    Google Scholar 

  41. Boyer, J.C., Vetrone, F., Cuccia, L.A., Capobianco, J.A.: Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 128, 7444–7445 (2006)

    Google Scholar 

  42. Cheng, L.A., Yang, K., Zhang, S.A., Shao, M.W., Lee, S.T., Liu, Z.A.: Highly-sensitive multiplexed in vivo Imaging using PEGylated upconversion nanoparticles. Nano Res. 3, 722–732 (2010)

    Google Scholar 

  43. Dong, N.N., Pedroni, M., Piccinelli, F., Conti, G., Sbarbati, A., Ramirez-Hernandez, J.E., Maestro, L.M., Iglesias-de la Cruz, M.C., Sanz-Rodriguez, F., Juarranz, A., Chen, F., Vetrone, F., Capobianco, J.A., Sole, J.G., Bettinelli, M., Jaque, D., Speghini, A.: NIR-to-NIR two-photon excited CaF2: Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano 5, 8665–8671 (2011)

    Google Scholar 

  44. Jalil, R.A., Zhang, Y.: Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 29, 4122–4128 (2008)

    Google Scholar 

  45. Liu, Z., Pu, F., Huang, S., Yuan, Q.H., Ren, J.S., Qu, X.G.: Long-circulating Gd2O3:Yb3+, Er3+ up-conversion nanoprobes as high-performance contrast agents for multi-modality imaging. Biomaterials 34, 1712–1721 (2013)

    Google Scholar 

  46. Nyk, M., Kumar, R., Ohulchanskyy, T.Y., Bergey, E.J., Prasad, P.N.: High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in TM3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 8, 3834–3838 (2008)

    Google Scholar 

  47. Wang, J., Wang, F., Wang, C., Liu, Z., Liu, X.G.: Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew. Chem. Int. Ed. 50, 10369–10372 (2011)

    Google Scholar 

  48. Wei, X.J., Wang, W., Chen, K.Z.: Preparation and characterization of ZnS:Tb, Gd and ZnS:Er, Yb, Gd nanoparticles for bimodal magnetic-fluorescent imaging. Dalton Trans. 42, 1752–1759 (2013)

    Google Scholar 

  49. Yan, L., Chang, Y.N., Zhao, L.N., Gu, Z.J., Liu, X.X., Tian, G., Zhou, L.J., Ren, W.L., Jin, S., Yin, W.Y., Chang, H.Q., Xing, G.M., Gao, X.F., Zhao, Y.L.: The use of polyethylenimine-modified graphene oxide as a nanocarrier for transferring hydrophobic nanocrystals into water to produce water-dispersible hybrids for use in drug delivery. Carbon 57, 120–129 (2013)

    Google Scholar 

  50. Yang, T.S., Sun, Y., Liu, Q., Feng, W., Yang, P.Y., Li, F.Y.: Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials 33, 3733–3742 (2012)

    Google Scholar 

  51. Yin, W.Y., Zhao, L.N., Zhou, L.J., Gu, Z.J., Liu, X.X., Tian, G., Jin, S., Yan, L., Ren, W.L., Xing, G.M., Zhao, Y.L.: Enhanced red emission from GdF3:Yb3+, Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging. Chem. Eur. J. 18, 9239–9245 (2012)

    Google Scholar 

  52. Yin, W.Y., Zhou, L.J., Gu, Z.J., Tian, G., Jin, S., Yan, L., Liu, X.X., Xing, G.M., Ren, W.L., Liu, F., Pan, Z.W., Zhao, Y.L.: Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging. J. Mater. Chem. 22, 6974–6981 (2012)

    Google Scholar 

  53. Zeng, S.J., Tsang, M.K., Chan, C.F., Wong, K.L., Hao, J.H.: PEG modified BaGdF5:Yb/Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging. Biomaterials 33, 9232–9238 (2012)

    Google Scholar 

  54. Zhou, J., Liu, Z., Li, F.Y.: Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 41, 1323–1349 (2012)

    Google Scholar 

  55. Zhou, J., Zhu, X.J., Chen, M., Sun, Y., Li, F.Y.: Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging. Biomaterials 33, 6201–6210 (2012)

    Google Scholar 

  56. Bae, Y.M., Park, Y.I., Nam, S.H., Kim, J.H., Lee, K., Kim, H.M., Yoo, B., Choi, J.S., Lee, K.T., Hyeon, T., Suh, Y.D.: Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials 33, 9080–9086 (2012)

    Google Scholar 

  57. Lim, S.F., Riehn, R., Ryu, W.S., Khanarian, N., Tung, C.K., Tank, D., Austin, R.H.: In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans. Nano Lett. 6, 169–174 (2006)

    Google Scholar 

  58. Zhou, J.C., Yang, Z.L., Dong, W., Tang, R.J., Sun, L.D., Yan, C.H.: Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb, Tm nanocrystals. Biomaterials 32, 9059–9067 (2011)

    Google Scholar 

  59. Chen, J., Guo, C.R., Wang, M., Huang, L., Wang, L.P., Mi, C.C., Li, J., Fang, X.X., Mao, C.B., Xu, S.K.: Controllable synthesis of NaYF4:Yb, Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans. J. Mater. Chem. 21, 2632–2638 (2011)

    Google Scholar 

  60. Xiong, L.Q., Yang, T.S., Yang, Y., Xu, C.J., Li, F.Y.: Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 31, 7078–7085 (2010)

    Google Scholar 

  61. Yang, Y., Sun, Y., Liu, Y., Peng, J.J., Wu, Y.Q., Zhang, Y.J., Feng, W., Li, F.Y.: Long-term in vivo biodistribution and toxicity of Gd(OH)3 nanorods. Biomaterials 34, 508–515 (2013)

    Google Scholar 

  62. Zhou, J., Sun, Y., Du, X.X., Xiong, L.Q., Hu, H., Li, F.Y.: Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 31, 3287–3295 (2010)

    Google Scholar 

  63. Shan, J.N., Chen, J.B., Meng, J., Collins, J., Soboyejo, W., Friedberg, J.S., Ju, Y.G.: Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors. J. Appl. Phys. 104, 094308 (2008)

    Google Scholar 

  64. Chatteriee, D.K., Rufalhah, A.J., Zhang, Y.: Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29, 937–943 (2008)

    Google Scholar 

  65. Tian, G., Gu, Z.J., Zhou, L.J., Yin, W.Y., Liu, X.X., Yan, L., Jin, S., Ren, W.L., Xing, G.M., Li, S.J., Zhao, Y.L.: Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv. Mater. 24, 1226–1231 (2012)

    Google Scholar 

  66. Zhou, L.J., Gu, Z.J., Liu, X.X., Yin, W.Y., Tian, G., Yan, L., Jin, S., Ren, W.L., Xing, G.M., Li, W., Chang, X.L., Hu, Z.B., Zhao, Y.L.: Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J. Mater. Chem. 22, 966–974 (2012)

    Google Scholar 

  67. Zijlmans, H., Bonnet, J., Burton, J., Kardos, K., Vail, T., Niedbala, R.S., Tanke, H.J.: Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal. Biochem. 267, 30–36 (1999)

    Google Scholar 

  68. Hilderbrand, S.A., Shao, F.W., Salthouse, C., Mahmood, U., Weissleder, R.: Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem. Commun. 28, 4188–4190 (2009)

    Google Scholar 

  69. Liu, Q., Sun, Y., Yang, T.S., Feng, W., Li, C.G., Li, F.Y.: Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J. Am. Chem. Soc. 133, 17122–17125 (2011)

    Google Scholar 

  70. Chen, G.Y., Shen, J., Ohulchanskyy, T.Y., Patel, N.J., Kutikov, A., Li, Z.P., Song, J., Pandey, R.K., Agren, H., Prasad, P.N., Han, G.: (alpha-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6, 8280–8287 (2012)

    Google Scholar 

  71. Xia, A., Gao, Y., Zhou, J., Li, C.Y., Yang, T.S., Wu, D.M., Wu, L.M., Li, F.Y.: Core-shell NaYF4:Yb3+,Tm3+@FexOy nanocrystals for dual-modality T-2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials 32, 7200–7208 (2011)

    Google Scholar 

  72. Xia, A., Chen, M., Gao, Y., Wu, D.M., Feng, W., Li, F.Y.: Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-ray computed tomography and magnetic resonance. Biomaterials 33, 5394–5405 (2012)

    Google Scholar 

  73. Xing, H.Y., Bu, W.B., Ren, Q.G., Zheng, X.P., Li, M., Zhang, S.J., Qu, H.Y., Wang, Z., Hua, Y.Q., Zhao, K.L., Zhou, L.P., Peng, W.J., Shi, J.L.: A NaYbF4:Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging. Biomaterials 33, 5384–5393 (2012)

    Google Scholar 

  74. Zou, W.Q., Visser, C., Maduro, J.A., Pshenichnikov, M.S., Hummelen, J.C.: Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 6, 560–564 (2012)

    Google Scholar 

  75. Chen, G.Y., Ohulchanskyy, T.Y., Kachynski, A., Agren, H., Prasad, P.N.: Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm. ACS Nano 5, 4981–4986 (2011)

    Google Scholar 

  76. Zhan, Q.Q., Qian, J., Liang, H.J., Somesfalean, G., Wang, D., He, S.L., Zhang, Z.G., Andersson-Engels, S.: Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano 5, 3744–3757 (2011)

    Google Scholar 

  77. Shen, J., Chen, G., Vu, A.-M., Fan, W., Bilsel, O.S., Chang, C.-C., Han, G.: Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv. Opt. Mater. 1, 644–650 (2013)

    Google Scholar 

  78. Xie, X.J., Gao, N.Y., Deng, R.R., Sun, Q., Xu, Q.H., Liu, X.G.: Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles. J. Am. Chem. Soc. 135, 12608–12611 (2013)

    Google Scholar 

  79. Wang, Y.F., Liu, G.Y., Sun, L.D., Xiao, J.W., Zhou, J.C., Yan, C.H.: Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 7, 7200–7206 (2013)

    Google Scholar 

  80. Li, X., Wang, R., Zhang, F., Zhou, L., Shen, D., Yao, C., Zhao, D.: Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm. Sci. Rep. 3, 3536 (2013)

    Google Scholar 

  81. Matsumura, Y., Maeda, H.: A new concept for macromolecular therapeutics in cancer-chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986)

    Google Scholar 

  82. Iyer, A.K., Khaled, G., Fang, J., Maeda, H.: Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 11, 812–818 (2006)

    Google Scholar 

  83. Kamimura, M., Kanayama, N., Tokuzen, K., Soga, K., Nagasaki, Y.: Near-infrared (1550 nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly(4-vinylbenzylphosphonate). Nanoscale 3, 3705–3713 (2011)

    Google Scholar 

  84. Zamboni, W.C.: Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin. Cancer Res. 11, 8230–8234 (2005)

    Google Scholar 

  85. Dobrovolskaia, M.A., McNeil, S.E.: Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2, 469–478 (2007)

    Google Scholar 

  86. Kareem, H., Sandstrom, K., Elia, R., Gedda, L., Anniko, M., Lundqvist, H., Nestor, M.: Blocking EGFR in the liver improves the tumor-to-liver uptake ratio of radiolabeled EGF. Tumor Biol. 31, 79–87 (2010)

    Google Scholar 

  87. Xu, C.T., Svensson, N., Axelsson, J., Svenmarker, P., Somesfalean, G., Chen, G.Y., Liang, H.J., Liu, H.C., Zhang, Z.G., Andersson-Engels, S.: Autofluorescence insensitive imaging using upconverting nanocrystals in scattering media. Appl. Phys. Lett. 93, 171103 (2008)

    Google Scholar 

  88. Xu, C.T., Axelsson, J., Andersson-Engels, S.: Fluorescence diffuse optical tomography using upconverting nanoparticles. Appl. Phys. Lett. 94, 251107 (2009)

    Google Scholar 

  89. Liu, H.C., Xu, C.T., Andersson-Engels, S.: Multibeam fluorescence diffuse optical tomography using upconverting nanoparticles. Opt. Lett. 35, 718–720 (2010)

    Google Scholar 

  90. Xu, C.T., Svenmarker, P., Liu, H.C., Wu, X., Messing, M.E., Wallenberg, L.R., Andersson-Engels, S.: High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles. ACS Nano 6, 4788–4795 (2012)

    Google Scholar 

  91. Das, G.K., Heng, B.C., Ng, S.C., White, T., Loo, J.S.C., D’Silva, L., Padmanabhan, P., Bhakoo, K.K., Selvan, S.T., Tan, T.T.Y.: Gadolinium oxide ultranarrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging. Langmuir 26, 8959–8965 (2010)

    Google Scholar 

  92. Wang, Z.L., Hao, J.H., Chan, H.L.W.: Down- and up-conversion photoluminescence, cathodoluminescence and paramagnetic properties of NaGdF4:Yb3+, Er3+ submicron disks assembled from primary nanocrystals. J. Mater. Chem. 20, 3178–3185 (2010)

    Google Scholar 

  93. Ryu, J., Park, H.Y., Kim, K., Kim, H., Yoo, J.H., Kang, M., Im, K., Grailhe, R., Song, R.: Facile synthesis of ultrasmall and hexagonal NaGdF4: Yb3+, Er3+ nanoparticles with magnetic and upconversion imaging properties. J. Phys. Chem. C 114, 21077–21082 (2010)

    Google Scholar 

  94. Kumar, R., Nyk, M., Ohulchanskyy, T.Y., Flask, C.A., Prasad, P.N.: Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv. Funct. Mater. 19, 853–859 (2009)

    Google Scholar 

  95. Chen, D.Q., Yu, Y.L., Huang, F., Yang, A.P., Wang, Y.S.: Lanthanide activator doped NaYb1-xGdxF4 nanocrystals with tunable down-, up-conversion luminescence and paramagnetic properties. J. Mater. Chem. 21, 6186–6192 (2011)

    Google Scholar 

  96. Zhou, J., Yu, M.X., Sun, Y., Zhang, X.Z., Zhu, X.J., Wu, Z.H., Wu, D.M., Li, F.Y.: Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials 32, 1148–1156 (2011)

    Google Scholar 

  97. Liu, Q., Sun, Y., Li, C.G., Zhou, J., Li, C.Y., Yang, T.S., Zhang, X.Z., Yi, T., Wu, D.M., Li, F.Y.: F-18-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano 5, 3146–3157 (2011)

    Google Scholar 

  98. Li, Z.Q., Zhang, Y., Shuter, B., Idris, N.M.: Hybrid lanthanide nanoparticles with paramagnetic shell coated on upconversion fluorescent nanocrystals. Langmuir 25, 12015–12018 (2009)

    Google Scholar 

  99. Liu, J.N., Bu, J.W., Bu, W.B., Zhang, S.J., Pan, L.M., Fan, W.P., Chen, F., Zhou, L.P., Peng, W.J., Zhao, K.L., Du, J.L., Shi, J.L.: Real-time in vivo quantitative monitoring of drug release by dual-mode magnetic resonance and upconverted luminescence imaging. Angew. Chem. Int. Ed. 53, 4551–4555 (2014)

    Google Scholar 

  100. Lu, H.C., Yi, G.S., Zhao, S.Y., Chen, D.P., Guo, L.H., Cheng, J.: Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. J. Mater. Chem. 14, 1336–1341 (2004)

    Google Scholar 

  101. Shen, J., Sun, L.D., Zhang, Y.W., Yan, C.H.: Superparamagnetic and upconversion emitting Fe3O4/NaYF4:Yb, Er hetero-nanoparticles via a crosslinker anchoring strategy. Chem. Commun. 46, 5731–5733 (2010)

    Google Scholar 

  102. Gai, S.L., Yang, P.P., Li, C.X., Wang, W.X., Dai, Y.L., Niu, N., Lin, J.: Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Adv. Funct. Mater. 20, 1166–1172 (2010)

    Google Scholar 

  103. Yu, X.G., Shan, Y., Li, G.C., Chen, K.Z.: Synthesis and characterization of bifunctional magnetic-optical Fe3O4@SiO2@Y2O3:Yb3+, Er3+ near-infrared-to-visible up-conversion nanoparticles. J. Mater. Chem. 21, 8104–8109 (2011)

    Google Scholar 

  104. Chen, F., Zhang, S.J., Bu, W.B., Liu, X.H., Chen, Y., He, Q.J., Zhu, M., Zhang, L.X., Zhou, L.P., Peng, W.J., Shi, J.L.: A “neck-formation” strategy for an antiquenching magnetic/upconversion fluorescent bimodal cancer probe. Chem. Eur. J. 16, 11254–11260 (2010)

    Google Scholar 

  105. Gao, Q., Xiu, Y., Li, G.D., Chen, J.S.: Sensor material based on occluded trisulfur anionic radicals for convenient detection of trace amounts of water molecules. J. Mater. Chem. 20, 3307–3312 (2010)

    Google Scholar 

  106. Cheng, L., Yang, K., Li, Y.G., Chen, J.H., Wang, C., Shao, M.W., Lee, S.T., Liu, Z.: Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. Int. Ed. 50, 7385–7390 (2011)

    Google Scholar 

  107. He, M., Huang, P., Zhang, C.L., Hu, H.Y., Bao, C.C., Gao, G., He, R., Cui, D.X.: Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging. Adv. Funct. Mater. 21, 4470–4477 (2011)

    Google Scholar 

  108. Liu, Y.L., Ai, K.L., Liu, J.H., Yuan, Q.H., He, Y.Y., Lu, L.H.: A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew. Chem. Int. Ed. 51, 1437–1442 (2012)

    Google Scholar 

  109. Xing, H.Y., Zheng, X.P., Ren, Q.G., Bu, W.B., Ge, W.Q., Xiao, Q.F., Zhang, S.J., Wei, C.Y., Qu, H.Y., Wang, Z., Hua, Y.Q., Zhou, L.P., Peng, W.J., Zhao, K.L., Shi, J.L.: Computed tomography imaging-guided radiotherapy by targeting upconversion nanocubes with significant imaging and radiosensitization enhancements. Sci. Rep. 3, 1751 (2013)

    Google Scholar 

  110. Sun, Y., Yu, M.X., Liang, S., Zhang, Y.J., Li, C.G., Mou, T.T., Yang, W.J., Zhang, X.Z., Li, B.A., Huang, C.H., Li, F.Y.: Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials 32, 2999–3007 (2011)

    Google Scholar 

  111. Liu, Q., Chen, M., Sun, Y., Chen, G.Y., Yang, T.S., Gao, Y., Zhang, X.Z., Li, F.Y.: Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence/fluorescence/positron emission tomography imaging. Biomaterials 32, 8243–8253 (2011)

    Google Scholar 

  112. Yang, Y., Sun, Y., Cao, T.Y., Peng, J.J., Liu, Y., Wu, Y.Q., Feng, W., Zhang, Y.J., Li, F.Y.: Hydrothermal synthesis of NaLuF4:Sm153,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials 34, 774–783 (2013)

    Google Scholar 

  113. Zhu, X.J., Zhou, J., Chen, M., Shi, M., Feng, W., Li, F.Y.: Core-shell Fe3O4@NaLuF4:Yb, Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 33, 4618–4627 (2012)

    Google Scholar 

  114. Xiao, Q.F., Bu, W.B., Ren, Q.G., Zhang, S.J., Xing, H.Y., Chen, F., Li, M., Zheng, X.P., Hua, Y.Q., Zhou, L.P., Peng, W.J., Qu, H.Y., Wang, Z., Zhao, K.L., Shi, J.L.: Radiopaque fluorescence-transparent TaOx decorated upconversion nanophosphors for in vivo CT/MR/UCL trimodal imaging. Biomaterials 33, 7530–7539 (2012)

    Google Scholar 

  115. Sun, Y., Zhu, X.J., Peng, J.J., Li, F.Y.: Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging. ACS Nano 7, 11290–11300 (2013)

    Google Scholar 

  116. Dai, Y.L., Xiao, H.H., Liu, J.H., Yuan, Q.H., Ma, P.A., Yang, D.M., Li, C.X., Cheng, Z.Y., Hou, Z.Y., Yang, P.P., Lin, J.: In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J. Am. Chem. Soc. 135, 18920–18929 (2013)

    Google Scholar 

  117. Liu, Q., Feng, W., Li, F.Y.: Water-soluble lanthanide upconversion nanophosphors: synthesis and bioimaging applications in vivo. Coordin. Chem. Rev. 273, 100–110 (2014)

    Google Scholar 

  118. Yu, M.X., Li, F.Y., Chen, Z.G., Hu, H., Zhan, C., Yang, H., Huang, C.H.: Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Anal. Chem. 81, 930–935 (2009)

    Google Scholar 

  119. Xiong, L.Q., Chen, Z.G., Tian, Q.W., Cao, T.Y., Xu, C.J., Li, F.Y.: High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal. Chem. 81, 8687–8694 (2009)

    Google Scholar 

  120. Liu, K., Wang, Y., Kong, X., Liu, X., Zhang, Y., Tu, L., Ding, Y., Aalders, M.C.G., Buma, W.J., Zhang, H.: Multispectral upconversion luminescence intensity ratios for ascertaining the tissue imaging depth. Nanoscale 6, 9257–9263 (2014)

    Google Scholar 

  121. Liu, Q., Yin, B.R., Yang, T.S., Yang, Y.C., Shen, Z., Yao, P., Li, F.Y.: A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet-triplet annihilation. J. Am. Chem. Soc. 135, 5029–5037 (2013)

    Google Scholar 

  122. Rocha, U., Jacinto, C., Silva, W.F., Guedes, I., Benayas, A., Maestro, L.M., Elias, M.A., Bovero, E., van Veggel, F., Sole, J.A.G., Jaque, D.: Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles. ACS Nano 7, 1188–1199 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, F. (2015). Upconversion Nanoparticles for Biomedical Imaging. In: Photon Upconversion Nanomaterials. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45597-5_6

Download citation

Publish with us

Policies and ethics