Skip to main content

Upconversion Nanoparticles for Thermal Sensing

  • Chapter
  • First Online:
Photon Upconversion Nanomaterials

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Thermometer has been developed for several centuries from contact to non-contact. With the development of nanotechnology, it becomes possible to use nanothermometry to detect the temperature within a single cell. Upconversion nanoparticle (UCNPs) is one of the promising candidates for developing non-contact nanothermometry. There are several parameters that define the luminescence properties which are dependent on temperature: intensity, band shape, spectral position, bandwidth, polarization, and lifetime. Among these parameters, band shape is the most widely used one. So we introduce the FIR theory which is used to figure out the relationship between the band shape and temperature. We also compare UCNPs with quantum dots, gold nanoparticles (GNPs), and green fluorescent protein (GFP) to show each other’s merits and demerits. We can foresee that UCNPs could be very useful in the near future even though there are still many challenges need to conquer.

Chengli Wang and Fan Zhang contributed together to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer, L.H., Harms, G.S., Wolfbeis, O.S.: Upconverting nanoparticles for nanoscale thermometry. Angew. Chem. Int. Ed. Engl. 50, 4546–4551 (2011)

    Article  Google Scholar 

  2. dos Santos, P.V., de Araujo, M.T., Gouveia-Neto, A.S., Medeiros Neto, J.A., Sombra, A.S.B.: Optical temperature sensing using upconversion fluorescence emission in Er 3+/Yb 3+-codoped chalcogenide glass. Appl. Phys. Lett. 73, 578–581 (1998)

    Google Scholar 

  3. Wade, S.A., Collins, S.F., Baxter, G.W.: Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys. 94, 4743–4757 (2003)

    Article  Google Scholar 

  4. Yang, J.-M.: Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. ACS Nano 5, 5067–5071 (2011)

    Article  Google Scholar 

  5. Brites, C.D., Lima, P.P., Silva, N.J., Millan, A., Amaral, V.S., Palacio, F., Carlos, L.D.: Thermometry at the nanoscale. Nanoscale 4, 4799–4829 (2012)

    Article  Google Scholar 

  6. Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., Riess, H.: The cellular and molecular basis of hyperthermia. Critical Rev. Oncol./Hematol. 43, 33–56 (2002)

    Google Scholar 

  7. Kuruganti, P.T., Qi, H.: Asymmetry analysis in breast cancer detection using thermal infrared images. Proceedings of the Second Joint EMBSiBMES Conference 2, 1155–1156 (2002)

    Google Scholar 

  8. Daniel Jaque, B., del Rosal, E.M., Rodríguez, L.M., Maestro, P.H., Solé, José García: Fluorescent nanothermometers for intracellular thermal sensing. Nanomedicine 9, 1743–1758 (2014)

    Google Scholar 

  9. Jaque, D., Vetrone, F.: Luminescence nanothermometry. Nanoscale 4, 4301–4326 (2012)

    Article  Google Scholar 

  10. Wu, K., Cui, J., Kong, X., Wang, Y.: Temperature dependent upconversion luminescence of Yb∕Er codoped NaYF4 nanocrystals. J. Appl. Phys. 110, 053510 (2011)

    Article  Google Scholar 

  11. Haro-González, P., Martín, I.R., Martín, L.L., León-Luis, S.F., Pérez-Rodríguez, C., Lavín, V.: Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors. Opt. Mater. 33, 742–745 (2011)

    Article  Google Scholar 

  12. Heyes, A.L., Seefeldt, S., Feist, J.P.: Two-colour phosphor thermometry for surface temperature measurement. Opt. Mater. 38, 257–265 (2006)

    Google Scholar 

  13. Bizzak, D.J., Chyu, M.K.: Rare-earth phosphor laser-induced fluorescence thermal imaging system. Rev. Sci. Instrum. 65, 102–108 (1994)

    Article  Google Scholar 

  14. Song, E.-H., Ding, S., Wu, M., Ye, S., Xiao, F., Dong, G.-P., Zhang, Q.-Y.: Temperature-tunable upconversion luminescence of perovskite nanocrystals KZnF3:Yb3+, Mn2+. J. Phys. Chem. C 1, 4209–4215 (2013)

    Google Scholar 

  15. Wang, X., Kong, X., Yu, Y., Sun, Y., Zhang, H.: Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity. J. Phys. Chem. C 111, 15119 (2007)

    Article  Google Scholar 

  16. Sedlmeier, A., Achatz, D.E., Fischer, L.H., Gorris, H.H., Wolfbeis, O.S.: Photon upconverting nanoparticles for luminescent sensing of temperature. Nanoscale 4, 7090–7096 (2012)

    Article  Google Scholar 

  17. Cao, B.S., He, Y.Y., Feng, Z.Q., Li, Y.S., Dong, B.: Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor. Sens. Actuat. B-Chem. 159, 8–11 (2011)

    Article  Google Scholar 

  18. Dong, B., Cao, B., He, Y., Liu, Z., Li, Z., Feng, Z.: Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv. Mater. 24, 1987–1993 (2012)

    Article  Google Scholar 

  19. Vetrone, F., Sole, J.G., Naccache, R., Sanz-Rodríguez, F., Capobianco, J.A.: Temperature Sensing Using Fluorescent Nanothermometers. Acs Nano 4, 3254-3258 (2010)

    Google Scholar 

  20. Zheng, S.: Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors. Nanoscale 1, 5 (2014)

    Google Scholar 

  21. Liu, L., Wang, Y., Zhang, X., Yang, K., Bai, Y., Huang, C., Song, Y.: Optical thermometry through green and red upconversion emissions in Er3+/Yb3+/Li+:ZrO2 nanocrystals. Opt. Commun. 284, 1876–1879 (2011)

    Article  Google Scholar 

  22. Singh, A.K., Singh, S.K., Gupta, B.K., Prakash, R., Rai, S.B.: Probing a highly efficient dual mode: down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors. Dalton Trans. 42, 1065–1072 (2013)

    Article  Google Scholar 

  23. Zhou, S., Deng, K., Wei, X., Jiang, G., Duan, C., Chen, Y., Yin, M.: Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing. Opt. Commun. 291, 138–142 (2013)

    Article  Google Scholar 

  24. Singh, S.K., Kumar, K., Rai, S.B.: Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry. Sens. Actuat. A Phys. 149, 16–20 (2009)

    Article  Google Scholar 

  25. Dong, N.N., Pedroni, M., Piccinelli, F., Conti, G., Sbarbati, A., Ramírez-Hernández, J.E., Maestro, L.M., Iglesias-de la Cruz, M.C., Sanz-Rodriguez, F., Juarranz, A., Chen F., Vetrone, F., Capobianco, J.A., Sole, J.G., Bettinelli, M., Jaque, D., Speghini, A.: NIR-to-NIR Two-Photon Excited CaF2: Tm3+,Yb3+ Nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. Acs Nano 5, 8665–8671 (2011)

    Google Scholar 

  26. Verma, R.K., Rai, S.B.: Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe. J. Quant. Spectrosc. Radiat. Transfer 113, 1594–1600 (2012)

    Article  Google Scholar 

  27. Alencar, M.A.R.C., Maciel, G.S., de Araújo, C.B., Patra, A.: Er3+-doped BaTiO3 nanocrystals for thermometry: influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Appl. Phys. Lett. 84, 4753–4756 (2004)

    Google Scholar 

  28. Dong, B., Yang, T., Lei, M.K.: Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3. Sens. Actuat. B-Chem. 123, 667–670 (2007)

    Article  Google Scholar 

  29. Dong, B., Liu, D.P., Wang, X.J., Yang, T., Miao, S.M., Li, C.R.: Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb 3+ codoped Al2O3. Appl. Phys. Lett. 90, 1–4 (2007)

    Google Scholar 

  30. Dong, B., Cao, B.S., Feng, Z.Q., Wang, X.J., He, Y.Y.: Optical temperature sensing through extraordinary enhancement of green up-conversion emissions for Er–Yb–Mo:Al2O3. Sens. Actuat. B-Chem. 165, 34–37 (2012)

    Article  Google Scholar 

  31. Su, Q., Han, S., Xie, X., Zhu, H., Chen, H., Chen, C.-K., Liu, R.-S., Chen, X., Wang, F., Liu, X.: The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc. 134, 20849–20857 (2012)

    Google Scholar 

  32. Wang, F., Deng, R., Wang, J., Wang, Q., Han, Y., Zhu, H., Chen, X., Liu, X.: Tuning upconversion through energy migration incore–shell nanoparticles. Nat. Mater. 10, 1–6 (2011)

    Google Scholar 

  33. Allison, S.W., Gillies, G.T., Rondinone, A.J., Cates, M.R.: Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles: measurements from 7 to 77 °C. Nanotechnology 14, 859–863 (2003)

    Google Scholar 

  34. Yu, J., Sun, L., Peng, H., Stich, M.I.J.: Luminescent terbium and europium probes for lifetime based sensing of temperature between 0 and 70 °C. J. Mater. Chem. 20, 6975–6981 (2010)

    Article  Google Scholar 

  35. Cai, Z.P., Xiao, L., Xu, H.Y., Mortier, M.: Point temperature sensor based on green decay in an Er:ZBLALiP microsphere. J. Lumin. 129, 1994–1996 (2009)

    Article  Google Scholar 

  36. Rocha, U., da Silva, C.J., Silva, W.F., Guedes, I., Benayas, A., Maestro, M.L.M., Bovero, E., van Veggel, F.C.J.M., Sole, J.A.G.S., Jaque, D.: Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles. Acs Nano 7, 1188–1192 (2013)

    Google Scholar 

  37. Savchuk, O.A., Carvajal, J.J., Pujol, M.C., Massons, J., Haro-González, P., Jaque, D., Díaz, F., Aguilò, M.: New strategies for luminescence thermometry in the biological range using upconverting nanoparticles. Biophotonics: Photonic Solutions for Better Health Care IV 9129, doi:10.1117/12.2052074 (2014)

  38. Chen, R., Ta, V.D., Xiao, F., Zhang, Q., Sun, H.: Multicolor hybrid upconversion nanoparticles and their improved performance as luminescence temperature sensors due to energy transfer. Small 9, 1052–1057 (2013)

    Article  Google Scholar 

  39. Xiao, Q., Li, Y., Li, F., Zhang, M., Zhang, Z., Lin, H.: Rational design of a thermalresponsive-polymer-switchable FRET system for enhancing the temperature sensitivity of upconversion nanophosphors. nanoscale (2014). doi:10.1039/C4NR02497D

  40. Chen, B., Dong, B., Wang, J., Zhang, S., Xu, L., Yu, W., Song, H.: Amphiphilic silane modified NaYF4:Yb, Er loaded with Eu(TTA)3 (TPPO)2 nanoparticles and their multi-functions: dual mode temperature sensing and cell imaging. Nanoscale 5, 8541–8549 (2013)

    Article  Google Scholar 

  41. Li, C., Hu, J., Liu, S.: Engineering FRET processes within synthetic polymers, polymeric assemblies and nanoparticles via modulating spatial distribution of fluorescent donors and acceptors. Soft Matter 8, 7096–7102 (2012)

    Article  Google Scholar 

  42. Liu, Y., Han, X., He, L., Yin, Y.: Thermoresponsive assembly of charged gold nanoparticles and their reversible tuning of plasmon coupling. Angew. Chem. Int. Ed. Engl. 51, 6373–6377 (2012)

    Article  Google Scholar 

  43. Debasu, M.L., Ananias, D., Pastoriza-Santos, I., Liz-Marzan, L.M., Rocha, J., Carlos, L.D.: All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 k based on Er(3+) emission and blackbody radiation. Adv. Mater. 25, 4868–4874 (2013)

    Article  Google Scholar 

  44. Huang, X., El-Sayed, I.H., Qian, W., El-Sayed, M.A.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115-2120 (2006)

    Google Scholar 

  45. de Mello Donegá, C., Bode, M., Meijerink, A.: Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B 74, 1–9 (2006)

    Google Scholar 

  46. Han, B., Hanson, W.L., Bensalah, K., Tuncel, A., Stern, J.M., Cadeddu, J.A.: Development of quantum dot-mediated fluorescence thermometry for thermal therapies. Ann. Biomed. Eng. 37, 1230–1239 (2009)

    Article  Google Scholar 

  47. Li, S., Zhang, K., Yang, J.M., Lin, L., Yang, H.: Single quantum dots as local temperature markers. Nano Lett. 7, 3102–3105 (2007)

    Article  Google Scholar 

  48. Maestro, L.M., Rodriguez, E.M., Rodriguez, F.S., la Cruz, M.C., Juarranz, A., Naccache, R., Vetrone, F., Jaque, D., Capobianco, J.A., Sole, J.G.: CdSe quantum dots for two-photon fluorescence thermal imaging. Nano Lett. 10, 5109–5115 (2010)

    Google Scholar 

  49. Maestro, L.M., Haro-González, P., Iglesias-de la Cruz, M.C., Sanz-Rodríguez, F., Juarranz, A., Solé, J.G., Jaque, D.: Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia. Nanomedicine 8, 379–388 (2013)

    Google Scholar 

  50. Maestro, L.M., Haro-Gonzalez, P., Sanchez-Iglesias, A., Liz-Marzan, L.M., Garcia Sole, J., Jaque, D.: Quantum dot thermometry evaluation of geometry dependent heating efficiency in gold nanoparticles. Langmuir 30, 1650–1658 (2014)

    Article  Google Scholar 

  51. Shang, L., Stockmar, F., Azadfar, N., Nienhaus, G.U.: Intracellular thermometry by using fluorescent gold nanoclusters. Angew. Chem. Int. Ed. Engl. 52, 11154–11157 (2013)

    Article  Google Scholar 

  52. Donner, J.S., Thompson, S.A., Kreuzer, M.P., Baffou, G., Quidant, R.: Mapping intracellular temperature using green fluorescent protein. Nano Lett. 12, 2107–2111 (2012)

    Article  Google Scholar 

  53. Kiyonaka, S., Kajimoto, T., Sakaguchi, R., Shinmi, D., Omatsu-Kanbe, M., Matsuura, H., Imamura, H., Yoshizaki, T., Hamachi, I., Morii, T., Mori, Y.: Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat. Methods 10, 1232–1238 (2013)

    Article  Google Scholar 

  54. Shang, L., Dong, S., Nienhaus, G.U.: Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6, 401–418 (2011)

    Article  Google Scholar 

  55. Goodrich, G.P., Bao, L., Gill-Sharp, K., Sang, K.L., Wang, J., Payne, J.D.: Photothermal therapy in a murine colon cancer model using near-infrared absorbing gold nanorods. J. Biomed. Opt. 15, 1–8 (2010)

    Article  Google Scholar 

  56. Liu, Y., Ai, K., Cheng, X., Huo, L., Lu, L.: Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv. Funct. Mater. 20, 951–956 (2010)

    Article  Google Scholar 

  57. Wang, Y., Wang, Y., Zhou, F., Kim, P., Xia, Y.: Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small 8, 3769–3773 (2012)

    Article  Google Scholar 

  58. Huang, C.C., Chen, C.T., Shiang, Y.C., Lin, Z.H., Chang, H.T.: Synthesis of fluorescent carbohydrate-protected au nanodots for detection of concanavalin A and escherichia coli. Anal. Chem. 81, 875–882 (2009)

    Article  Google Scholar 

  59. Shang, L., Brandholt, S., Stockmar, F., Trouillet, V., Bruns, M., Nienhaus, G.U.: Effect of protein adsorption on the fluorescence of ultrasmall gold nanoclusters. Small 8, 661–665 (2012)

    Article  Google Scholar 

  60. Amelia, M., Flamini, R., Latterini, L.: Recovery of CdS nanocrystal defects through conjugation with proteins. Langmuir 26, 10129–10134 (2010)

    Article  Google Scholar 

  61. Perevedentseva, E., Melnik, N., Tsai, C.Y., Lin, Y.C., Kazaryan, M., Cheng, C.L.: Effect of surface adsorbed proteins on the photoluminescence of nanodiamond. J. Appl. Phys. 109, 034704 (2011)

    Article  Google Scholar 

  62. Shang, L., Dörlich, R.M., Trouillet, V., Bruns, M., Nienhaus, U.G.: Ultrasmall fluorescent silver nanoclusters: protein adsorption and its effects on cellular responses. Nano Res. 5, 531–542 (2012)

    Article  Google Scholar 

  63. Chudakov, D.M., Lukyanov, S., Lukyanov, K.A.: Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 23, 605–614 (2005)

    Article  Google Scholar 

  64. Day, R.N., Davidson, M.W.: The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38, 2887–2921 (2009)

    Article  Google Scholar 

  65. Maestro, L.M., Rodriguez, E.M., Rodriguez, F.S., la Cruz, M.C., Juarranz, A., Naccache, R., Vetrone, F., Jaque, D., Capobianco, J.A., Sole, J.G.: CdSe quantum dots for two-photon fluorescence thermal imaging. Nano Lett. 10, 5109–5115 (2010)

    Google Scholar 

  66. Albers, A.E., Chan, E.M., McBride, P.M., Ajo­Franklin, C.M., Cohen, B.E., Helms, B.A.: Dual­emitting quantum dot/quantum rod­based nanothermometers with enhanced response and sensitivity in live cells. J. Am. Chem. Soc. 134, 9565–9568 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, F. (2015). Upconversion Nanoparticles for Thermal Sensing. In: Photon Upconversion Nanomaterials. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45597-5_10

Download citation

Publish with us

Policies and ethics