Tree Depth Influence in Genetic Programming for Generation of Competitive Agents for RTS Games

  • Pablo García-SánchezEmail author
  • Antonio Fernández-Ares
  • Antonio M. Mora
  • Pedro A. Castillo
  • Jesús González
  • Juan Julián Merelo Guervós
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8602)


This work presents the results obtained from comparing different tree depths in a Genetic Programming Algorithm to create agents that play the Planet Wars game. Three different maximum levels of the tree have been used (3, 7 and Unlimited) and two bots available in the literature, based on human expertise, and optimized by a Genetic Algorithm have been used for training and comparison. Results show that in average, the bots obtained using our method equal or outperform the previous ones, being the maximum depth of the tree a relevant parameter for the algorithm.


Genetic Programming Good Individual Tree Depth Genetic Program Algorithm Competitive Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.J.: A procedural balanced map generator with self-adaptive complexity for the real-time strategy game planet wars. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 274–283. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Mora, A.M., Fernández-Ares, A., Guervós, J.J.M., García-Sánchez, P., Fernandes, C.M.: Effect of noisy fitness in real-time strategy games player behaviour optimisation using evolutionary algorithms. J. Comput. Sci. Technol. 27(5), 1007–1023 (2012)CrossRefGoogle Scholar
  3. 3.
    Fernández-Ares, A., García-Sánchez, P., Mora, A.M., Guervós, J.J.M.: Adaptive bots for real-time strategy games via map characterization. In: 2012 IEEE Conference on Computational Intelligence and Games, CIG 2012, Granada, Spain, September 11–14, pp. 417–721. IEEE (2012)Google Scholar
  4. 4.
    Koza, J.R.: Genetically breeding populations of computer programs to solve problems in artificial intelligence. In: Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence, pp. 819–827 (1990)Google Scholar
  5. 5.
    Garcia-Sanchez, P., Merelo, J.J., Laredo, J.L.J., Mora, A.M., Castillo, P.A.: Evolving xslt stylesheets for document transformation. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1021–1030. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.J.: A review of computational intelligence in rts games. In: FOCI, pp. 114–121. IEEE (2013)Google Scholar
  7. 7.
    Esparcia-Alcázar, A.I., García, A.I.M., García, A.M., Guervós, J.J.M., García-Sánchez, P.: Controlling bots in a first person shooter game using genetic algorithms. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)Google Scholar
  8. 8.
    Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the nero video game. In: IEEE Transactions on Evolutionary Computation, pp. 653–668 (2005)Google Scholar
  9. 9.
    Mahlmann, T., Togelius, J., Yannakakis, G.N.: Spicing up map generation. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 224–233. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Sipper, M., Azaria, Y., Hauptman, A., Shichel, Y.: Designing an evolutionary strategizing machine for game playing and beyond. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews 37(4), 583–593 (2007)CrossRefGoogle Scholar
  11. 11.
    Elyasaf, A., Hauptman, A., Sipper, M.: Evolutionary design of freecell solvers. IEEE Transactions on Computational Intelligence and AI in Games 4(4), 270–281 (2012)CrossRefGoogle Scholar
  12. 12.
    Benbassat, A., Sipper, M.: Evolving both search and strategy for reversi players using genetic programming, 47–54 (2012)Google Scholar
  13. 13.
    Brandstetter, M., Ahmadi, S.: Reactive control of ms. pac man using information retrieval based on genetic programming, 250–256 (2012)Google Scholar
  14. 14.
    Wittkamp, M., Barone, L., While, L.: A comparison of genetic programming and look-up table learning for the game of spoof, 63–71 (2007)Google Scholar
  15. 15.
    Esparcia-Alcázar, A.I., Moravec, J.: Fitness approximation for bot evolution in genetic programming. Soft Computing 17(8), 1479–1487 (2013)CrossRefGoogle Scholar
  16. 16.
    García-Sánchez, P., González, J., Castillo, P.A., Arenas, M.G., Guervós, J.J.M.: Service oriented evolutionary algorithms. Soft Comput. 17(6), 1059–1075 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pablo García-Sánchez
    • 1
    Email author
  • Antonio Fernández-Ares
    • 1
  • Antonio M. Mora
    • 1
  • Pedro A. Castillo
    • 1
  • Jesús González
    • 1
  • Juan Julián Merelo Guervós
    • 1
  1. 1.Department of Computer Architecture and Technology and CITIC-UGRUniversity of GranadaGranadaSpain

Personalised recommendations