Advertisement

A Trajectory-Based Heuristic to Solve a Three-Objective Optimization Problem for Wireless Sensor Network Deployment

  • Jose M. Lanza-GutiérrezEmail author
  • Juan A. Gómez-Pulido
  • Miguel A. Vega-Rodríguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8602)

Abstract

Nowadays, wireless sensor networks (WSNs) are widely used in more and more fields of application. However, there are some important shortcomings which have not been solved yet in the current literature. This paper focuses on how to add relay nodes to previously established static WSNs with the purpose of optimizing three important factors: energy consumption, average coverage and network reliability. As this is an NP-hard multiobjective optimization problem, we consider two well-known genetic algorithms (NSGA-II and SPEA2) and a multiobjective approach of the variable neighborhood search algorithm (MO-VNS). These metaheuristics are used to solve the problem from a freely available data set, analyzing all the results obtained by considering two multiobjective quality indicators (hypervolume and set coverage). We conclude that MO-VNS provides better performance on average than the standard algorithms NSGA-II and SPEA2.

Keywords

Coverage Energy efficiency Multiobjective optimization NSGA-II SPEA2 Relay node Reliability VNS Wireless sensor network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cardei, M., Du, D.Z.: Improving wireless sensor network lifetime through power aware organization. Wireless Networks 11, 333–340 (2005)CrossRefGoogle Scholar
  2. 2.
    Cheng, X., Narahari, B., Simha, R., Cheng, M., Liu, D.: Strong minimum energy topology in wireless sensor networks: Np-completeness and heuristics. IEEE Transactions on Mobile Computing 2, 248–256 (2003)CrossRefGoogle Scholar
  3. 3.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press (2009)Google Scholar
  4. 4.
    Dargie, W., Poellabauer, C.: Fundamentals of Wireless Sensor Networks: Theory and Practice. Wiley (2010)Google Scholar
  5. 5.
    Deb, B., Bhatnagar, S., Nath, B.: Reliable information forwarding using multiple paths in sensor networks. In: Proceedings of IEEE LCN, pp. 406–415 (2003)Google Scholar
  6. 6.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6, 182–197 (2000)CrossRefGoogle Scholar
  7. 7.
    Fonseca, C., Knowles, J., Thiele, L., Zitzler, E.: Performance assessment tool suite. http://www.tik.ee.ethz.ch/pisa/?page=assessment.php
  8. 8.
    Geiger, M.J.: Randomised variable neighbourhood search for multi objective optimisation. In: Proceedings of the 4th EU/ME Workshop 0809.0271, pp. 34–42 (2008)Google Scholar
  9. 9.
    Han, X., Cao, X., Lloyd, E.L., Shen, C.C.: Fault-tolerant relay node placement in heterogeneous wireless sensor networks. IEEE Transactions on Mobile Computing 9, 643–656 (2010)CrossRefGoogle Scholar
  10. 10.
    Hu, X.M., Zhang, J., Yu, Y., Chung, H.H., Li, Y.L., Shi, Y.H., Luo, X.N.: Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks. IEEE Transactions on Evolutionary Computation 14, 766–781 (2010)CrossRefGoogle Scholar
  11. 11.
    Konstantinidis, A., Yang, K., Zhang, Q.: An evolutionary algorithm to a multi-objective deployment and power assignment problem in wireless sensor networks. In: Proceedings of IEEE GLOBECOM, pp. 1–6 (2008)Google Scholar
  12. 12.
    Konstantinidis, A., Yang, K.: Multi-objective k-connected deployment and power assignment in wsns using a problem-specific constrained evolutionary algorithm based on decomposition. Computer Communications 34, 83–98 (2011)CrossRefGoogle Scholar
  13. 13.
    Lanza-Gutierrez, J.M., Gomez-Pulido, J.A., Vega-Rodriguez, M.A.: Instance sets for optimization in wireless sensor networks. http://arco.unex.es/wsnopt (2011)
  14. 14.
    Lanza-Gutierrez, J.M., Gomez-Pulido, J.A., Vega-Rodriguez, M.A.: A new realistic approach for the relay node placement problem in wireless sensor networks by means of evolutionary computation. Ad Hoc and Sensor Wireless Networks (2013) (accepted)Google Scholar
  15. 15.
    Lanza-Gutiérrez, J.M., Gómez-Pulido, J.A., Vega-Rodr\’ıguez, M.A., Sánchez-Pérez, J.M.: Relay Node Positioning in Wireless Sensor Networks by Means of Evolutionary Techniques. In: Kamel, M., Karray, F., Hagras, H. (eds.) AIS 2012. LNCS, vol. 7326, pp. 18–25. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Lloyd, E.L., Xue, G.: Relay node placement in wireless sensor networks. IEEE Transactions on Computers 56, 134–138 (2007)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Martins, F., Carrano, E., Wanner, E., Takahashi, R., Mateus, G.: A hybrid multiobjective evolutionary approach for improving the performance of wireless sensor networks. IEEE Sensors Journal 11, 545–554 (2011)CrossRefGoogle Scholar
  18. 18.
    Mukherjee, J.Y.B., Ghosal, D.: Wireless sensor network survey. Computer Networks 52, 2292–2330 (2008)CrossRefGoogle Scholar
  19. 19.
    Perez, A., Labrador, M., Wightman, P.: A multiobjective approach to the relay placement problem in wsns. Proceedings of IEEE WCNC 1, 475–480 (2011)Google Scholar
  20. 20.
    Suurballe, J.W.: Disjoint paths in a network. Networks 4, 125–145 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Wang, B.: Coverage problems in sensor networks: A survey. ACM Comput. Surv. 43, 32:1–32:53 (2011)Google Scholar
  22. 22.
    Wang, Q., Xu, K., Takahara, G., Hassanein, H.: Device placement for heterogeneous wireless sensor networks: Minimum cost with lifetime constraints. IEEE Transactions on Wireless Communications 6, 2444–2453 (2007)CrossRefGoogle Scholar
  23. 23.
    Zhao, C., Chen, P.: Particle swarm optimization for optimal deployment of relay nodes in hybrid sensor networks. Proceedings of IEEE CEC. 1, 3316–3320 (2007)Google Scholar
  24. 24.
    Zitzler, E., Laumanns, M., Thiele, L.: Spea 2: Improving the strength pareto evolutionary algorithm. Tech. rep., Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jose M. Lanza-Gutiérrez
    • 1
    Email author
  • Juan A. Gómez-Pulido
    • 1
  • Miguel A. Vega-Rodríguez
    • 1
  1. 1.Department of Computers and Communications Technologies, Polytechnic SchoolUniversity of ExtremaduraCaceresSpain

Personalised recommendations