A Hybrid Primal Heuristic for Robust Multiperiod Network Design

  • Fabio D’AndreagiovanniEmail author
  • Jonatan Krolikowski
  • Jonad Pulaj
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8602)


We investigate the Robust Multiperiod Network Design Problem, a generalization of the classical Capacitated Network Design Problem that additionally considers multiple design periods and provides solutions protected against traffic uncertainty. Given the intrinsic difficulty of the problem, which proves challenging even for state-of-the art commercial solvers, we propose a hybrid primal heuristic based on the combination of ant colony optimization and an exact large neighborhood search. Computational experiments on a set of realistic instances from the SNDlib show that our heuristic can find solutions of extremely good quality with low optimality gap.


Multiperiod Network Design Traffic Uncertainty Robust Optimization Multiband Robustness Hybrid Heuristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauschert, T., Büsing, C., D’Andreagiovanni, F., Koster, A.M.C.A., Kutschka, M., Steglich, U.: Network planning under demand uncertainty with robust optimization. IEEE Communications Magazine 52(2), 178-–185 (2014). doi: 10.1109/MCOM.2014.6736760 CrossRefGoogle Scholar
  2. 2.
    Lardeux, B., Nace, D., Geffard, J.: Multiperiod network design with incremental routing. Networks 50(1), 109–117 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Gamvros, I., Raghavan, S.: Multi-period traffic routing in satellite networks. Europ. J. Oper. Res. 219(3), 738–750 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Büsing, C., D’Andreagiovanni, F.: New Results about Multi-band Uncertainty in Robust Optimization. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 63–74. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Büsing, C., D’Andreagiovanni, F.: A new theoretical framework for robust optimization under multi-band uncertainty. In: Helber, S., et al. (eds.) Operations Research Proceedings 2012, pp. 115–121. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Büsing, C., D’Andreagiovanni, F., Raymond, A.: 0–1 multiband robust optimization. In: Huisman, D., et al. (eds.) Operations Research Proceedings 2013. pp. 89–95. Springer, Heidelberg (to appear, 2014)Google Scholar
  7. 7.
    Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to improve mip solutions. Math. Program. 102, 71–90 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dorigo, M., Di Caro, G., Gambardella, L.: Ant algorithms for discrete optimization. Artificial Life 5(2), 137–172 (1999)CrossRefGoogle Scholar
  10. 10.
    Orlowski, S., Wessäly, R., Pioro, M., Tomaszewski, A.: SnDlib 1.0 - survivable network design library. Networks 55(3), 276–286 (2010)Google Scholar
  11. 11.
    Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River (1993)zbMATHGoogle Scholar
  12. 12.
    Bley, A., Grötschel, M., Wessäly, R.: Design of broadband virtual private networks: Model and heuristic for the b-win. vol. 53. DIMACS SDMTCS, pp. 1–16 (2000)Google Scholar
  13. 13.
    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  14. 14.
    D’Andreagiovanni, F.: On Improving the Capacity of Solving Large-scale Wireless Network Design Problems by Genetic Algorithms. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 11–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    D’Andreagiovanni, F., Mannino, C., Sassano, A.: Negative Cycle Separation in Wireless Network Design. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 51–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Kambayashi, Y.: A review of routing protocols based on ant-like mobile agents. Algorithms 6(3), 442–456 (2013)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  18. 18.
    Gambardella, L.M., Montemanni, R., Weyland, D.: Coupling ant colony systems with strong local searches. Europ. J. Oper. Res. 220(3), 831–843 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Maniezzo, V.: Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS J. Comp. 11(4), 358–369 (1999)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Fabio D’Andreagiovanni
    • 1
    • 2
    Email author
  • Jonatan Krolikowski
    • 2
  • Jonad Pulaj
    • 2
  1. 1.DFG Research Center MATHEONTechnical University BerlinBerlinGermany
  2. 2.Department of OptimizationZuse-Institute Berlin (ZIB)BerlinGermany

Personalised recommendations