Geometric Semantic Genetic Programming for Financial Data

  • James McDermottEmail author
  • Alexandros Agapitos
  • Anthony Brabazon
  • Michael O’Neill
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8602)


We cast financial trading as a symbolic regression problem on the lagged time series, and test a state of the art symbolic regression method on it. The system is geometric semantic genetic programming, which achieves good performance by converting the fitness landscape to a cone landscape which can be searched by hill-climbing. Two novel variants are introduced and tested also, as well as a standard hill-climbing genetic programming method. Baselines are provided by buy-and-hold and ARIMA. Results are promising for the novel methods, which produce smaller trees than the existing geometric semantic method. Results are also surprisingly good for standard genetic programming. New insights into the behaviour of geometric semantic genetic programming are also generated.


Automated trading Commodity Exchange rate Index Genetic programming Semantics Fitness landscape Hill-climbing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agapitos, A., O’Neill, M., Brabazon, A.: Stateful program representations for evolving technical trading rules. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation GECCO, pp. 199–200. ACM (2011)Google Scholar
  2. 2.
    Brabazon, A., O’Neill, M.: Biologically inspired algorithms for financial modelling. Springer, Berlin (2006)zbMATHGoogle Scholar
  3. 3.
    Brabazon, A., O’Neill, M.: Natural computing in computational finance, vol. 1-3. Springer (2008)Google Scholar
  4. 4.
    Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C. et al. (eds.): EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer Heidelberg (2003)Google Scholar
  5. 5.
    Lohpetch, D., Corne, D.: Outperforming Buy-and-Hold with Evolved Technical Trading Rules: Daily, Weekly and Monthly Trading. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010, Part II. LNCS, vol. 6025, pp. 171–181. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    McConaghy, T.: FFX: Fast, scalable, deterministic symbolic regression technology. In: Genetic Programming Theory and Practice IX, pp. 235–260. Springer (2011)Google Scholar
  7. 7.
    Michie, D.: Memo functions and machine learning. Nature 218(5136), 19–22 (1968)CrossRefGoogle Scholar
  8. 8.
    Moraglio, A.: Towards a geometric unification of evolutionary algorithms. Ph.D. thesis, University of Essex (November 2007).
  9. 9.
    Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric Semantic Genetic Programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    O’Reilly, U.M., Oppacher, F.: Program search with a hierarchical variable length representation: Genetic programming, simulated annealing and hill climbing. In: Davidor, Y., Schwefel, H.P., Manner, R. (eds.) Parallel Problem Solving from Nature - PPSN III. LNCS, vol. 866, pp. 397–406. Springer, Jerusalem (1994).
  11. 11.
    Tsay, R.S.: Analysis of financial time series, 3rd edn. Wiley, Hoboken (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A New Implementation of Geometric Semantic GP and Its Application to Problems in Pharmacokinetics. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 205–216. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • James McDermott
    • 1
    • 2
    Email author
  • Alexandros Agapitos
    • 1
  • Anthony Brabazon
    • 1
    • 3
  • Michael O’Neill
    • 1
  1. 1.Natural Computing Research and Applications Group, Complex and Adaptive Systems LabUniversity College DublinDublinIreland
  2. 2.Management Information Systems, Lochlann Quinn School of BusinessUniversity College DublinDublinIreland
  3. 3.Accountancy, Lochlann Quinn School of BusinessUniversity College DublinDublinIreland

Personalised recommendations