A Memetic Framework for Solving Difficult Inverse Problems

  • Maciej SmołkaEmail author
  • Robert Schaefer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8602)


The paper introduces a multi-deme, memetic global optimization strategy Hierarchic memetic Strategy (HMS) especially well-suited to the solution of a class of parametric inverse problems. This strategy develops dynamically a tree of dependent populations (demes) searching with the various accuracy growing from the root to the leaves. The search accuracy is associated with the accuracy of solving direct problems by \(hp\)–adaptive Finite Element Method. Throughout the paper we describe details of exploited accuracy adaptation and computational cost reduction mechanisms, an agent-based architecture of the proposed system, a sample implementation and preliminary benchmark results.


Inverse problems Hybrid optimization methods Memetic algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tarantola, A.: Inverse Problem Theory. Mathematics and its Applications. Society for Industrial and Applied Mathematics (2005)Google Scholar
  2. 2.
    Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Mathematics and its Applications, vol. 375. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Pardalos, P., Romeijn, H.: Handbook of Global Optimization (Nonconvex Optimization and its Applications), vol. 2. Kluwer (1995)Google Scholar
  4. 4.
    Chakraborty, U.K. (ed.): Advances in Differential Evolution, vol. 143. Studies in Computational Intelligence. Springer (2008)Google Scholar
  5. 5.
    Cantú Paz, E.: Efficient and accurate parallel genetic algorithms, vol. 2. Kluwer (2000)Google Scholar
  6. 6.
    Törn, A.A.: A search clustering approach to global optimization. In: Dixon, L.C.W., Szegö, G.P. (eds.) Towards Global Optimisation 2, pp. 49–62. North-Holland, Amsterdam (1978)Google Scholar
  7. 7.
    Schaefer, R., Adamska, K., Telega, H.: Genetic clustering in continuous landscape exploration. Engineering Applications of Artificial Intelligence 17, 407–416 (2004)CrossRefGoogle Scholar
  8. 8.
    Schaefer, R., Kołodziej, J.: Genetic search reinforced by the population hierarchy. In: Foundations of Genetic Algorithms 7, pp. 383–399, Morgan Kaufman (2003)Google Scholar
  9. 9.
    Wierzba, B., Semczuk, A., Kołodziej, J., Schaefer, R.: Hierarchical Genetic Strategy with real number encoding. In: Proceedings of the 6th Conference on Evolutionary Algorithms and Global Optimization, pp. 231–237 (2003)Google Scholar
  10. 10.
    Barabasz, B., Migórski, S., Schaefer, R., Paszyński, M.: Multi-deme, twin adaptive strategy hp-HGS. Inverse Problems in Science and Engineering 19(1), 3–16 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W., Zdunek, A.: Computing with hp Finite Elements II. Frontiers: Three-Dimensional Elliptic and Maxwell Problems with Applications. Chapman & Hall/CRC (2007)Google Scholar
  12. 12.
    Neri, F., Cotta, C., Moscato, P. (eds.): Handbook of Memetic Algorithms. Studies in Computational Intelligence, vol. 379. Springer, Heidelberg (2012)Google Scholar
  13. 13.
    Cetnarowicz, K., Kisiel-Dorohinicki, M., Nawarecki, E.: The application of evolution process in multi-agent world (MAW) to the prediction system. In: Tokoro, M. (ed.) Proceedings of the 2nd International Conference on Multiagent Systems (ICMAS 1996). AAAI Press (1996)Google Scholar
  14. 14.
    Byrski, A., Schaefer, R., Smołka, M., Cotta, C.: Asymptotic guarantee of success for multi-agent memetic systems. Bulletin of the Polish Academy of Sciences: Technical Sciences 61(1), 257–278 (2013)Google Scholar
  15. 15.
    Jojczyk, P., Schaefer, R.: Global impact balancing in the hierarchic genetic search. Computing and Informatics 28(2), 181–193 (2009)Google Scholar
  16. 16.
    Wróbel, K., Torba, P., Paszyński, M., Byrski, A.: Evolutionary multi-agent computing in inverse problems. Computer Science 14(3), 367–383 (2013)CrossRefGoogle Scholar
  17. 17.
    Burczyński, T., Orantek, P.: The hybrid genetic-gradient algorithm. In: Proceedings of 3rd KAEGiOG Conference, Potok Złoty, Poland (1999)Google Scholar
  18. 18.
    Grochowski, M., Smołka, M., Schaefer, R.: Architectural principles and scheduling strategies for computing agent systems. Fundamenta Informaticae 71(1), 15–26 (2006)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations