Skip to main content

Abstract

An investigation is presented of a low cost approach to the measurement of two and three dimensional objects using a flatbed scanner and image analysis software. Conventional measurement using relatively low cost instruments such as micrometers and vernier callipers can be time consuming and requires operator skills which result in higher overall costs. The increasing resolution and decreasing prices of flatbed scanners introduces the possibility of their use as a low cost alternative to traditional manual measuring. To investigate this, a simple dimensional measurement technique was developed using an unmodified, then a modified, flatbed scanner, a standard PC, and software. A dimensional accuracy of ±0.05 mm was achieved with a modified flatbed scanner system for slip gauge samples of nominal thickness 10mm and 5mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quinn, T.J.: Metrology, its role in today’s world, BIPM Rapport – 94/5. The International Bureau of Weights and Measures (1994)

    Google Scholar 

  2. Cheng, W.Y., Cheng, P.C., et al.: The use of modified flatbed and film scanners for large specimen imaging. Scanning 23(2), 135 (2001)

    Google Scholar 

  3. Krout, K.E., et al.: High-resolution scanner for neuroanatomical analysis. Journal of Neuroscience Methods 113(1), 37–40 (2002)

    Article  Google Scholar 

  4. Bond-Lamberty, B., Gower, S.T.: Estimation of stand-level leaf area for boreal bryophytes. Oecologia 151, 584–592 (2006)

    Article  Google Scholar 

  5. Bond-Lamberty, B., Wang, C., Gower, S.T.: The use of multiple measurement techniques to refine estimates of conifer needle geometry. Can. J. For. Res. 33, 101–105 (2003)

    Article  Google Scholar 

  6. Kuchenbuch, R.O., Ingram, K.T.: Image analysis for non-destructive and non-invasive quantification of root growth and soil water content in rhizotrons. Journal of Plant Nutrition and Soil Science 165(5), 573–581 (2002)

    Article  Google Scholar 

  7. Gabrielson, J., Hart, M., et al.: Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. Journal of Microbiological Methods 50(1), 63–73 (2002)

    Article  Google Scholar 

  8. Wolf, R.E., Williams, W.L., et al.: Using ‘DropletScan’ to analyze spray quality. Mid-Central ASAE (paper no. MC00-105), St. Joseph, MO (2000)

    Google Scholar 

  9. Peterson, K.W., Swartz, R.A., et al.: Hardened concrete air void analysis with a flatbed scanner. Transportation Research Record 1775, 36–43 (2001)

    Article  Google Scholar 

  10. Miriello, D., Crisci, G.M.: Image analysis and flatbed scanners: A visual procedure in order to study the macroporosity of the archeological and historical mortals. Journal of Cultural Heritage 7, 186–192 (2006)

    Article  Google Scholar 

  11. Van Dalen, G.: Determination of the size distribution and percentage of broken kernels of rice using flatbed scanning and image analysis. Food Res. Int. 37, 51–58 (2004)

    Article  Google Scholar 

  12. Shanin, M.A., Symons, S.J.: A machine vision system for grading lentils. Canadian Biosystems Engineering 43, 7.7–7.14 (2001)

    Google Scholar 

  13. Stanley, D.W., Baker, K.W.: A simple laboratory exercise in food structure/texture relationships using flatbed scanner. Journal of Food Science Education 1, 6–9 (2002)

    Article  Google Scholar 

  14. Zalocha, D., Kasperkiewicz, J.: Estimation of the structure of air entrained concrete using a flatbed scanner. Cement and Concrete research 35, 2041–2046 (2005)

    Article  Google Scholar 

  15. Casado-Rojo, S., Lorenzana, H.E.: A modified commercial scanner as an image plate for table-top optical applications. Review of Scientific Instruments 80(1), 13104–13104 (2009)

    Article  Google Scholar 

  16. Jones, M.P., Callahan, R.N., Bruce, R.D.: Flow Length Measurement of Injection Molded Spirals using a Flatbed Scanner. J. Industrial technology 0l7(1) (2011)

    Google Scholar 

  17. Kee, C.W., Ratnam, M.M.: A simple approach to fine wire diameter measurement using a high-resolution flatbed scanner. International Journal of Advanced Manufacturing Technology 40(9-10), 940–947 (2009)

    Article  Google Scholar 

  18. Hunter, J.S., Hunter, W.G.: Statistics for Experiments, 2nd edn. G.E.P. Box, Wiley & Sons, Inc. ( (2005)

    Google Scholar 

  19. ImageJ, http://rsb.info.nih.gov/ij/ (accessed August 30, 2011)

  20. Kresic-Juric, S., Madej, D., Fadil, S.: Applications of Hidden Markov Models in Bar Code Decoding. Intl. J. Pattern Recognition Letters 27, 1665–1672 (2006)

    Article  Google Scholar 

  21. Suchendra, M., Yiqing, B.Z., Walter, D.P.: A Genetic Algorithm-based Edge Detection Technique. In: IEEE Proceedings of the IJCNN 1993, October 25-29, vol. 3, pp. 2995–2999 (1993)

    Google Scholar 

  22. Chung-Chia, K., Wen-June, W.: A novel edge detection method based on the maximizing objective function. Pattern Recognition 40, 609–6018 (2007)

    Article  MATH  Google Scholar 

  23. Goodman, J.W.: Introduction to Fourier Optics. McGraw-Hill, New York (1967)

    Google Scholar 

  24. Russ, J.C.: The Image processing handbook, 3rd edn. CRC Press, FL (1999)

    MATH  Google Scholar 

  25. Epson Perfection V500 scanner handbook, http://www.epson.co.uk

  26. Born, M., Wolf, E.: Principles of Optics, 6th edn. Pergamon Press Ltd., Oxford (1986)

    Google Scholar 

  27. Shehrzad, Q.: Embeded image processing on the TMS320C6000TM DSP Examples in Code Composer StudioTM and MATLAB. Springer Science+Business Media, Inc. (2005)

    Google Scholar 

  28. Super Flux LED White, fact sheet (2010), http://www.rapidonline.com (January 2010)

  29. Chugui, Y.V.: Optical dimensional metrology for 3D objects of constant thickness. Measurement 30, 19–31 (2000)

    Article  Google Scholar 

  30. Chugui, Y.V.: Fraunhofer diffraction by volumetric bodies of constant thickness. J. Opt. Soc. Am. (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Divis, P., Mair, G.M., Corney, J. (2015). Desktop Scanner Metrology. In: Billingsley, J., Brett, P. (eds) Machine Vision and Mechatronics in Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45514-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45514-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45513-5

  • Online ISBN: 978-3-662-45514-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics