Skip to main content

Advanced Dynamic Path Control of a 3-DOF Spatial Parallel Robot Using Adaptive Neuro Fuzzy Inference System

  • Chapter
Machine Vision and Mechatronics in Practice

Abstract

In engineering applications, the very precise control of parallel manipulators to track the desired trajectory has received a great deal of attention. This paper presents a new methodology to investigate this problem based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) controller for three degrees of pure translational freedom of the spatial parallel manipulator by employing the architecture of a modified DELTA robot. At first, the mobility and velocity analysis of the manipulator is carried out in details. The inverse dynamic modeling is performed based on the principle of virtual work. Then, the control algorithm using ANFIS method is implemented and simulation results show the better performance in comparison with computed torque method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Staicu, S.: Recursive modelling in dynamics of Delta parallel robot. Robotica 27, 199–207 (2009)

    Article  Google Scholar 

  2. Hong, J., Yamamoto, M.: A calculation method of the reaction force and moment for a Delta-type parallel link robot fixed with a frame. Robotica 27, 579–587 (2009)

    Article  Google Scholar 

  3. Brandt, G., et al.: A compact robot for imageguided orthopedic surgery. IEEE Trans. Inform. Technol. Biomed. 3(4), 252–260 (1999)

    Article  Google Scholar 

  4. Homma, K., et al.: A wiredriven leg rehabilitatoin system: Development of a 4-DOF experimental system. In: Proc. of IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp. 908–913 (2003)

    Google Scholar 

  5. Takanobu, H., et al.: Mouth opening and closing training with 6-DOF parallel robot. In: Proc. of IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, pp. 1384–1389 (2000)

    Google Scholar 

  6. Clavel, R.: DELTA, A fast robot with parallel geometry. In: 8th Internat. Symposium on Industrial Robot, Lausanne, pp. 91–100 (1988)

    Google Scholar 

  7. Demaurex, M.-O.: The Delta robot within the industry. In: Parallel Kinematic Machines, pp. 395–399. Springer, London (1999)

    Chapter  Google Scholar 

  8. Holy, F., Steiner, K.: Machining system with movable tool head. US Patent 6161992 (2000)

    Google Scholar 

  9. Company, O., et al.: Modeling and preliminary design issues of a 3-axis parallel machine-tool. In: PKM 2000, Ann Arbor, USA, pp. 14–23 (2000)

    Google Scholar 

  10. Liu, X.-J., Jeong, J., Kim, J.: A three translational DoFs parallel cube-manipulator. Robotica 21, 645–653 (2003)

    Article  Google Scholar 

  11. Paul, R.C.: Modellings, trajectory, Cancellation and Servoing of Computer Controlled Arm. A.I. Memo 177, Stanford Artificial Intelligence Lab., Stanford University (1972)

    Google Scholar 

  12. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and Soft Computing. Prentice Hall, New Jersey (1997)

    Google Scholar 

  13. Tsoukalas, L.H., Uhrig, R.E.: Fuzzy and Neural Approaches in Engineering. John Wiley & Sons Inc. (1997)

    Google Scholar 

  14. Pradhan, S.K., et al.: Fuzzy logic techniques for navigation of several mobile robots. Appl. Soft Comput. 9, 290–304 (2009)

    Article  MathSciNet  Google Scholar 

  15. Kim, D., et al.: Zero-moment point trajectory modeling of a biped walking robot using an adaptive neuro-fuzzy system. IEE Proc. of Control Theory and Applications 152(4), 411–426 (2005)

    Article  Google Scholar 

  16. Hunt, K.H.: Kinematic Geometry of Mechanisms. Clarendon Press, Oxford (1978)

    MATH  Google Scholar 

  17. Kumar, V., et al.: Applications of screw system theory and Lie theory to spatial kinematics: A tutorial. In: Proc. 2000 ASME Design Engineering Technical Conf. (2000)

    Google Scholar 

  18. Li, Y., Xu, Q.: Kinematics and dexterity analysis for a novel 3-DOF translational parallel manipulator. In: Proc. of IEEE Int. Conf. on Robotics and Automation, Barcelona, pp. 2955–2960 (2005)

    Google Scholar 

  19. Tsai, L.W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. John Wiley & Sons, New York (1999)

    Google Scholar 

  20. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics 23(3), 665–685 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Asgari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Asgari, M., Ardestani, M.A. (2015). Advanced Dynamic Path Control of a 3-DOF Spatial Parallel Robot Using Adaptive Neuro Fuzzy Inference System. In: Billingsley, J., Brett, P. (eds) Machine Vision and Mechatronics in Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45514-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45514-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45513-5

  • Online ISBN: 978-3-662-45514-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics