Skip to main content

Recent Advances in P-Type Conjugated Polymers for High-Performance Solar Cells

  • Chapter
  • First Online:
Progress in High-Efficient Solution Process Organic Photovoltaic Devices

Part of the book series: Topics in Applied Physics ((TAP,volume 130))

Abstract

Bulk-heterojunction (BHJ) polymer solar cells have achieved significant progress in the recent years, with the efficiency now over 10 %. The p-type polymer in the BHJ blend played a key role in the amazing technology advance. In this chapter, we will timely update over 80 conjugated polymers leading to high-performance solar cells. The principle of molecular design with structure-properties relationship with respect to device characteristics will also be discussed, as the materials and morphology are tightly interconnected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Yu, J. Gao, J.C. Hummelen et al., Polymer photovoltaic cells—enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243), 1789–1791 (1995)

    Google Scholar 

  2. M.C. Scharber, D. Wuhlbacher, M. Koppe et al., Design rules for donors in bulk-heterojunction solar cells—towards 10 % energy-conversion efficiency. Adv. Mater. 18(6), 789–794 (2006)

    Google Scholar 

  3. T. Yang, M. Wang, C. Duan et al., Inverted polymer solar cells with 8.4 % efficiency by conjugated polyelectrolyte. Energy Environ. Sci. 5(8), 8208–8214 (2012)

    Google Scholar 

  4. L.T. Dou, J.B. You, J. Yang et al., Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat. Photonics 6(3), 180–185 (2012)

    Google Scholar 

  5. C.E. Small, S. Chen, J. Subbiah et al., High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nat. Photonics 6(2), 115–120 (2012)

    Google Scholar 

  6. Z.C. He, C.M. Zhong, X. Huang et al., Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 23(40), 4636–4643 (2011)

    Google Scholar 

  7. R.F. Service, Outlook brightens for plastic solar cells. Science 332(6027), 293 (2011)

    Google Scholar 

  8. E. Bundgaard, F.C. Krebs, Low band gap polymers for organic photovoltaics. Solar Energy Mater. Solar Cells 91(11), 954–985 (2007)

    Google Scholar 

  9. R. Kroon, M. Lenes, J.C. Hummelen et al., Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polym. Rev. 48(3), 531–582 (2008)

    Google Scholar 

  10. B.C. Thompson, J.M.J. Frechet, Organic photovoltaics—polymer-fullerene composite solar cells. Angew. Chem. Int. Edit. 47(1), 58–77 (2008)

    Google Scholar 

  11. S. Gunes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107(4), 1324–1338 (2007)

    Google Scholar 

  12. Y.J. Cheng, S.H. Yang, C.S. Hsu, Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109(11), 5868–5923 (2009)

    Google Scholar 

  13. J.W. Chen, Y. Cao, Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc. Chem. Res. 42(11), 1709–1718 (2009)

    Google Scholar 

  14. Y.F. Li, Y.P. Zou, Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv. Mater. 20(15), 2952–2958 (2008)

    Google Scholar 

  15. Y.F. Li, Molecular Design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 45(5), 723–733 (2012)

    Google Scholar 

  16. H.J. Son, B. Carsten, I.H. Jung et al., Overcoming efficiency challenges in organic solar cells: rational development of conjugated polymers. Energy Environ. Sci. 5(8), 8158–8170 (2012)

    Google Scholar 

  17. C.H. Duan, F. Huang, Y. Cao, Recent development of push-pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. J. Mater. Chem. 22(21), 10416–10434 (2012)

    Google Scholar 

  18. G. Li, R. Zhu, Y. Yang, Polymer solar cells. Nat. Photonics 6(3), 153–161 (2012)

    Google Scholar 

  19. Z.-G. Zhang, J. Wang, Structures and properties of conjugated donor-acceptor copolymers for solar cell applications. J. Mater. Chem. 22(10), 4178–4187 (2012)

    Google Scholar 

  20. H. Zhou, L. Yang, W. You, Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 45(2), 607–632 (2012)

    Google Scholar 

  21. F. He, L. Yu, How far can polymer solar cells go? In need of a synergistic approach. J. Phys. Chem. Lett. 2(24), 3102–3113 (2011)

    Google Scholar 

  22. L. Huo, J. Hou, Benzo[1,2-b:4,5-b [prime or minute]]dithiophene-based conjugated polymers: band gap and energy level control and their application in polymer solar cells. Polym. Chem.Uk 2(11), 2453–2461 (2011)

    Google Scholar 

  23. R.D. McCullough, The chemistry of conducting polythiophenes. Adv. Mater. 10(2), 93–116 (1998)

    Google Scholar 

  24. H. Sirringhaus, P.J. Brown, R.H. Friend et al., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401(6754), 685–688 (1999)

    Google Scholar 

  25. S.S. Zade, M. Bendikov, Twisting of conjugated oligomers and polymers: case study of oligo- and polythiophene. Chem.-Eur. J. 13(13), 3688–3700 (2007)

    Google Scholar 

  26. K. Yazawa, Y. Inoue, T. Yamamoto et al., Twist glass transition in regioregulated poly(3-alkylthiophene). Phys. Rev. B 74(9), 094204-1–094204-12 (2006)

    Google Scholar 

  27. O. Inganäs, G. Gustafsson, W.R. Salaneck et al., Thermochromism in thin films of poly(3-alkylthiophenes). Synth. Met. 28(1–2), 377–384 (1989)

    Google Scholar 

  28. C. Yang, F.P. Orfino, S. Holdcroft, A phenomenological model for predicting thermochromism of regioregular and nonregioregular poly(3-alkylthiophenes). Macromolecules 29(20), 6510–6517 (1996)

    Google Scholar 

  29. A.J. Moule, K. Meerholz, Controlling morphology in polymer-fullerene mixtures. Adv. Mater. 20(2), 240–245 (2008)

    Google Scholar 

  30. Y.M. Chang, L. Wang, Efficient poly(3-hexylthiophene)-based bulk heterojunction solar cells fabricated by an annealing-free approach. J. Phys. Chem. C 112(45), 17716–17720 (2008)

    Google Scholar 

  31. Y. Zhao, Z.Y. Xie, Y. Qu et al., Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene): methanofullerene bulk-heterojunction photovoltaic cells. Appl. Phys. Lett. 90(4), 043504 (2007)

    Google Scholar 

  32. Y. Yao, J.H. Hou, Z. Xu et al., Effect of solvent mixture on the nanoscale phase separation in polymer solar cells. Adv. Funct. Mater. 18(12), 1783–1789 (2008)

    Google Scholar 

  33. W.L. Wang, H.B. Wu, C.Y. Yang et al., High-efficiency polymer photovoltaic devices from regioregular-poly(3-hexylthiophene-2,5-diyl) and [6]-phenyl-C-61-butyric acid methyl ester processed with oleic acid surfactant. Appl. Phys. Lett. 90(18), 183512 (2007)

    Google Scholar 

  34. A.C. Arsenault, T.J. Clark, G. Von Freymann et al., From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat. Mater. 5(3), 179–184 (2006)

    Google Scholar 

  35. G. Li, V. Shrotriya, J.S. Huang et al., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4(11), 864–868 (2005)

    Google Scholar 

  36. W.L. Ma, C.Y. Yang, X. Gong et al., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15(10), 1617–1622 (2005)

    Google Scholar 

  37. L. Li, G. Lu, X. Yang, Improving performance of polymer photovoltaic devices using an annealing-free approach via construction of ordered aggregates in solution. J. Mater. Chem. 18(17), 1984–1990 (2008)

    Google Scholar 

  38. G. Zhao, Y. He, Y. Li, 6.5 % Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Adv. Mater. 22(39), 4355–4358 (2010)

    Google Scholar 

  39. J.M. Szarko, J.C. Guo, Y.Y. Liang et al., When function follows form: effects of donor copolymer side chains on film morphology and BHJ solar cell performance. Adv. Mater. 22(48), 5468–5472 (2010)

    Google Scholar 

  40. P.T. Wu, G.Q. Ren, S.A. Jenekhe, Crystalline random conjugated copolymers with multiple side chains: tunable intermolecular interactions and enhanced charge transport and photovoltaic properties. Macromolecules 43(7), 3306–3313 (2010)

    Google Scholar 

  41. B.C. Thompson, B.J. Kim, D.F. Kavulak et al., Influence of alkyl substitution pattern in thiophene copolymers on composite fullerene solar cell performance. Macromolecules 40(21), 7425–7428 (2007)

    Google Scholar 

  42. L.H. Nguyen, H. Hoppe, T. Erb et al., Effects of annealing on the nanomorphology and performance of poly(alkylthiophene): fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 17(7), 1071–1078 (2007)

    Google Scholar 

  43. B. Burkhart, P.P. Khlyabich, B.C. Thompson, Influence of the ethylhexyl side-chain content on the open-circuit voltage in rr-poly(3-hexylthiophene-co-3-(2-ethylhexyl)thiophene) copolymers. Macromolecules 45(9), 3740–3748 (2012)

    Google Scholar 

  44. H.A.M. van Mullekom, J.A.J.M. Venkemans, E.W. Meijer, Alternating copolymer of pyrrole and 2,1,3-benzothiadiazole. Chem. Commun. 18, 2163–2164 (1996)

    Google Scholar 

  45. J.L. Bredas, A.J. Heeger, F. Wudl, Towards organic polymers with very small intrinsic band gaps. I. Electronic structure of polyisothianaphthene and derivatives. J. Chem. Phys. 85(8), 4673–4678 (1986)

    Google Scholar 

  46. J.S. Panek, M. Yang, Diastereoselective additions of chiral (E)-crotylsilanes to.alpha.-alkoxy and.beta.-alkoxy aldehydes. A one-step, silicon-directed tetrahydrofuran synthesis. J. Am. Chem. Soc. 113(26), 9868–9870 (1991)

    Google Scholar 

  47. J. Roncali, Synthetic principles for bandgap control in linear π-conjugated systems. Chem. Rev. 97(1), 173–206 (1997)

    Google Scholar 

  48. M. Karikomi, C. Kitamura, S. Tanaka et al., New narrow-bandgap polymer composed of benzobis(1,2,5-thiadiazole) and thiophenes. J. Am. Chem. Soc. 117(25), 6791–6792 (1995)

    Google Scholar 

  49. M. Jayakannan, P.A. van Hal, R.A.J. Janssen, Synthesis and structure-property relationship of new donor–acceptor-type conjugated monomers and polymers on the basis of thiophene and benzothiadiazole. J. Polym. Sci. Part A Polym. Chem. 40(2), 251–261 (2002)

    Google Scholar 

  50. Y. Xia, X. Deng, L. Wang et al., An extremely narrow-band-gap conjugated polymer with heterocyclic backbone and its use in optoelectronic devices. Macromol. Rapid Comm. 27(15), 1260–1264 (2006)

    Google Scholar 

  51. I. Osaka, M. Shimawaki, H. Mori et al., Synthesis, characterization, and transistor and solar cell applications of a naphthobisthiadiazole-based semiconducting polymer. J. Am. Chem. Soc. 134(7), 3498–3507 (2012)

    Google Scholar 

  52. F. Liang, J. Lu, J. Ding et al., Design and synthesis of alternating regioregular oligothiophenes/benzothiadiazole copolymers for organic solar cells. Macromolecules 42(16), 6107–6114 (2009)

    Google Scholar 

  53. X. Gong, M. Tong, F.G. Brunetti et al., Bulk heterojunction solar cells with large open-circuit voltage: electron transfer with small donor-acceptor energy offset. Adv. Mater. 23(20), 2272–2277 (2011)

    Google Scholar 

  54. K.H. Ong, S.L. Lim, H.S. Tan et al., A versatile low bandgap polymer for air-stable, high-mobility field-effect transistors and efficient polymer solar cells. Adv. Mater. 23(11), 1409–1413 (2011)

    Google Scholar 

  55. Z. Hao, A. Iqbal, Some aspects of organic pigments. Chem. Soc. Rev. 26(3), 203–213 (1997)

    Google Scholar 

  56. W.K. Chan, Y. Chen, Z. Peng et al., Rational designs of multifunctional polymers. J. Am. Chem. Soc. 115(25), 11735–11743 (1993)

    Google Scholar 

  57. T. Beyerlein, B. Tieke, New photoluminescent conjugated polymers with 1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP) and 1,4-phenylene units in the main chain. Macromol. Rapid Comm. 21(4), 182–189 (2000)

    Google Scholar 

  58. D. Cao, Q. Liu, W. Zeng et al., Synthesis and characterization of novel red-emitting alternating copolymers based on fluorene and diketopyrrolopyrrole derivatives. J. Polym. Sci. Part A Polym. Chem. 44(8), 2395–2405 (2006)

    Google Scholar 

  59. A.R. Rabindranath, Y. Zhu, I. Heim et al., Red Emitting N-Functionalized Poly(1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole) (Poly-DPP): a deeply colored polymer with unusually large stokes shift. Macromolecules 39(24), 8250–8256 (2006)

    Google Scholar 

  60. A.P. Zoombelt, S.G.J. Mathijssen, M.G.R. Turbiez et al., Small band gap polymers based on diketopyrrolopyrrole. J. Mater. Chem. 20(11), 2240–2246 (2010)

    Google Scholar 

  61. M.M. Wienk, M. Turbiez, J. Gilot et al., Narrow-bandgap diketo-pyrrolo-pyrrole polymer solar cells: the effect of processing on the performance. Adv. Mater. 20(13), 2556–2560 (2008)

    Google Scholar 

  62. J.C. Bijleveld, A.P. Zoombelt, S.G.J. Mathijssen et al., Poly(diketopyrrolopyrrole–terthiophene) for ambipolar logic and photovoltaics. J. Am. Chem. Soc. 131(46), 16616–16617 (2009)

    Google Scholar 

  63. J.C. Bijleveld, R.A.M. Verstrijden, M.M. Wienk et al., Copolymers of diketopyrrolopyrrole and thienothiophene for photovoltaic cells. J. Mater. Chem. 21(25), 9224–9231 (2011)

    Google Scholar 

  64. J.C. Bijleveld, V.S. Gevaerts, D. Di Nuzzo et al., Efficient solar cells based on an easily accessible diketopyrrolopyrrole polymer. Adv. Mater. 22(35), E242–E246 (2010)

    Google Scholar 

  65. P. Sonar, S.P. Singh, Y. Li et al., High mobility organic thin film transistor and efficient photovoltaic devices using versatile donor-acceptor polymer semiconductor by molecular design. Energy Environ. Sci. 4(6), 2288–2296 (2011)

    Google Scholar 

  66. H. Bronstein, Z.Y. Chen, R.S. Ashraf et al., Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J. Am. Chem. Soc. 133(10), 3272–3275 (2011)

    Google Scholar 

  67. C.H. Woo, P.M. Beaujuge, T.W. Holcombe et al., Incorporation of furan into low band-gap polymers for efficient solar cells. J. Am. Chem. Soc. 132(44), 15547–15549 (2010)

    Google Scholar 

  68. A.T. Yiu, P.M. Beaujuge, O.P. Lee et al., Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. J. Am. Chem. Soc. 134(4), 2180–2185 (2012)

    Google Scholar 

  69. I. McCulloch, M. Heeney, C. Bailey et al., Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5(4), 328–333 (2006)

    Google Scholar 

  70. I. McCulloch, M. Heeney, M.L. Chabinyc et al., Semiconducting thienothiophene copolymers: design, synthesis, morphology, and performance in thin-film organic transistors. Adv. Mater. 21(10–11), 1091–1109 (2009)

    Google Scholar 

  71. C. Piliego, T.W. Holcombe, J.D. Douglas et al., Synthetic control of structural order in N-Alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J. Am. Chem. Soc. 132(22), 7595–7597 (2010)

    Google Scholar 

  72. M.-H. Chen, J. Hou, Z. Hong et al., Efficient polymer solar cells with thin active layers based on alternating polyfluorene copolymer/fullerene bulk heterojunctions. Adv. Mater. 21(42), 4238–4242 (2009)

    Google Scholar 

  73. J. Mei, K.R. Graham, R. Stalder et al., Synthesis of isoindigo-based oligothiophenes for molecular bulk heterojunction solar cells. Org. Lett. 12(4), 660–663 (2010)

    Google Scholar 

  74. G. Zhang, Y. Fu, Z. Xie et al., Synthesis and photovoltaic properties of new low bandgap isoindigo-based conjugated polymers. Macromolecules 44(6), 1414–1420 (2011)

    Google Scholar 

  75. E. Wang, Z. Ma, Z. Zhang et al., An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage. Chem. Commun. 47(17), 4908–4910 (2011)

    Google Scholar 

  76. E. Wang, Z. Ma, Z. Zhang et al., An easily accessible isoindigo-based polymer for high-performance polymer solar cells. J. Am. Chem. Soc. 133(36), 14244–14247 (2011)

    Google Scholar 

  77. T. Yamamoto, Z.-H. Zhou, T. Kanbara et al., π-conjugated donor—acceptor copolymers constituted of π-excessive and π-deficient arylene units. Optical and electrochemical properties in relation to CT structure of the polymer. J. Am. Chem. Soc. 118(43), 10389–10399 (1996)

    Google Scholar 

  78. T. Yamamoto, B.-L. Lee, H. Kokubo et al., Synthesis of a new thiophene/quinoxaline CT-type copolymer with high solubility and its basic optical properties. Macromol. Rapid Commun. 24(7), 440–443 (2003)

    Google Scholar 

  79. E. Wang, L. Hou, Z. Wang et al., An easily synthesized blue polymer for high-performance polymer solar cells. Adv. Mater. 22(46), 5240–5244 (2010)

    Google Scholar 

  80. Y. Huang, M. Zhang, L. Ye et al., Molecular energy level modulation by changing the position of electron-donating side groups. J. Mater. Chem. 22(12), 5700–5705 (2012)

    Google Scholar 

  81. M.-C. Yuan, M.-Y. Chiu, S.-P. Liu et al., A thieno[3,4-c]pyrrole-4,6-dione-based donor—acceptor polymer exhibiting high crystallinity for photovoltaic applications. Macromolecules 43(17), 6936–6938 (2010)

    Google Scholar 

  82. M.-S. Su, C.-Y. Kuo, M.-C. Yuan et al., Improving device efficiency of polymer/fullerene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives. Adv. Mater. 23(29), 3315–3319 (2011)

    Google Scholar 

  83. G.-Y. Chen, Y.-H. Cheng, Y.-J. Chou et al., Crystalline conjugated polymer containing fused 2,5-di(thiophen-2-yl)thieno[2,3-b]thiophene and thieno[3,4-c]pyrrole-4,6-dione units for bulk heterojunction solar cells. Chem. Commun. 47(17), 5064–5066 (2011)

    Google Scholar 

  84. H.L. Pan, Y.N. Li, Y.L. Wu et al., Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors. J. Am. Chem. Soc. 129(14), 4112–4113 (2007)

    Google Scholar 

  85. J. Hou, M.-H. Park, S. Zhang et al., Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo[1,2-b:4,5-b′]dithiophene. Macromolecules 41(16), 6012–6018 (2008)

    Google Scholar 

  86. H.Y. Chen, J.H. Hou, S.Q. Zhang et al., Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 3(11), 649–653 (2009)

    Google Scholar 

  87. H.J. Son, W. Wang, T. Xu et al., Synthesis of fluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic properties. J. Am. Chem. Soc. 133(6), 1885–1894 (2011)

    Google Scholar 

  88. Y. Huang, L. Huo, S. Zhang et al., Sulfonyl: a new application of electron-withdrawing substituent in highly efficient photovoltaic polymer. Chem. Commun. 47(31), 8904–8906 (2011)

    Google Scholar 

  89. Y.P. Zou, A. Najari, P. Berrouard et al., A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. J. Am. Chem. Soc. 132(15), 5330–5331 (2010)

    Google Scholar 

  90. Y. Zhang, S.K. Hau, H.L. Yip et al., Efficient polymer solar cells based on the copolymers of benzodithiophene and thienopyrroledione. Chem. Mater. 22(9), 2696–2698 (2010)

    Google Scholar 

  91. C. Piliego, T.W. Holcombe, J.D. Douglas et al., Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J. Am. Chem. Soc. 132(22), 7595–7597 (2010)

    Google Scholar 

  92. H.X. Zhou, L.Q. Yang, S.C. Price et al., Enhanced photovoltaic performance of low-bandgap polymers with deep LUMO levels. Angew. Chem. Int. Edit. 49(43), 7992–7995 (2010)

    Google Scholar 

  93. H.X. Zhou, L.Q. Yang, A.C. Stuart et al., Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7 % efficiency. Angew. Chem. Int. Edit. 50(13), 2995–2998 (2011)

    Google Scholar 

  94. S.C. Price, A.C. Stuart, L. Yang et al., Fluorine substituted conjugated polymer of medium band gap yields 7 % efficiency in polymer—fullerene solar cells. J. Am. Chem. Soc. 133(12), 4625–4631 (2011)

    Google Scholar 

  95. S. Subramaniyan, H. Xin, F.S. Kim et al., New thiazolothiazole copolymer semiconductors for highly efficient solar cells. Macromolecules 44(16), 6245–6248 (2011)

    Google Scholar 

  96. M.J. Zhang, X. Guo, Y.F. Li, Photovoltaic performance improvement of D–A copolymers containing bithiazole acceptor unit by using bithiophene bridges. Macromolecules 44(22), 8798–8804 (2011)

    Google Scholar 

  97. L.J. Huo, S.Q. Zhang, X. Guo et al., Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angew. Chem. Int. Edit. 50(41), 9697–9702 (2011)

    Google Scholar 

  98. L.J. Huo, J.H. Hou, S.Q. Zhang et al., A polybenzo[1,2-b:4,5-b′]dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells. Angew. Chem. Int. Edit. 49(8), 1500–1503 (2010)

    Google Scholar 

  99. M. Wang, X.W. Hu, P. Liu et al., Donor acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1, 2, 5]thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc. 133(25), 9638–9641 (2011)

    Google Scholar 

  100. Q. Peng, X.J. Liu, D. Su et al., Novel benzo[1,2-b:4,5-b′]dithiophene-benzothiadiazole derivatives with variable side chains for high-performance solar cells. Adv. Mater. 23(39), 4554–4558 (2011)

    Google Scholar 

  101. L.J. Huo, X. Guo, S.Q. Zhang et al., PBDTTTZ: a broad band gap conjugated polymer with high photovoltaic performance in polymer solar cells. Macromolecules 44(11), 4035–4037 (2011)

    Google Scholar 

  102. K.-T. Wong, T.-C. Chao, L.-C. Chi et al., Syntheses and structures of novel heteroarene-fused coplanar π-conjugated chromophores. Org. Lett. 8(22), 5033–5036 (2006)

    Google Scholar 

  103. Y.C. Chen, C.Y. Yu, Y.L. Fan et al., Low-bandgap conjugated polymer for high efficient photovoltaic applications. Chem. Commun. 46(35), 6503–6505 (2010)

    Google Scholar 

  104. Y. Zhang, J.Y. Zou, H.L. Yip et al., Indacenodithiophene and quinoxaline-based conjugated polymers for highly efficient polymer solar cells. Chem. Mater. 23(9), 2289–2291 (2011)

    Google Scholar 

  105. K.M. O’Malley, C.Z. Li, H.L. Yip et al., Enhanced open-circuit voltage in high performance polymer/fullerene bulk-heterojunction solar cells by cathode modification with a C60 surfactant. Adv. Energy Mater. 2(1), 82–86 (2012)

    Google Scholar 

  106. Y. Zhang, J.Y. Zou, H.L. Yip et al., Synthesis, characterization, charge transport, and photovoltaic properties of dithienobenzoquinoxaline- and dithienobenzopyridopyrazine-based conjugated polymers. Macromolecules 44(12), 4752–4758 (2011)

    Google Scholar 

  107. Y. Zhang, S.C. Chien, K.S. Chen et al., Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers. Chem. Commun. 47(39), 11026–11028 (2011)

    Google Scholar 

  108. M.J. Zhang, X. Guo, X.C. Wang et al., Synthesis and photovoltaic properties of D–A copolymers based on alkyl-substituted indacenodithiophene donor unit. Chem. Mater. 23(18), 4264–4270 (2011)

    Google Scholar 

  109. J.Y. Wang, S.K. Hau, H.L. Yip et al., Benzobis(silolothiophene)-based low bandgap polymers for efficient polymer solar cells. Chem. Mater. 23(3), 765–767 (2011)

    Google Scholar 

  110. R.S. Ashraf, Z.Y. Chen, D.S. Leem et al., Silaindacenodithiophene semiconducting polymers for efficient solar cells and high-mobility ambipolar transistors. Chem. Mater. 23(3), 768–770 (2011)

    Google Scholar 

  111. B.C. Schroeder, Z.G. Huang, R.S. Ashraf et al., Silaindacenodithiophene-based low band gap polymers—the effect of fluorine substitution on device performances and film morphologies. Adv. Funct. Mater. 22(8), 1663–1670 (2012)

    Google Scholar 

  112. K. Tamao, M. Uchida, T. Izumizawa et al., Silole derivatives as efficient electron transporting materials. J. Am. Chem. Soc. 118(47), 11974–11975 (1996)

    Google Scholar 

  113. Z.P. Fei, R.S. Ashraf, Z.G. Huang et al., Germaindacenodithiophene based low band gap polymers for organic solar cells. Chem. Commun. 48(24), 2955–2957 (2012)

    Google Scholar 

  114. F. He, W. Wang, W. Chen et al., Tetrathienoanthracene-based copolymers for efficient solar cells. J. Am. Chem. Soc. 133(10), 3284–3287 (2011)

    Google Scholar 

  115. C.H. Chen, Y.J. Cheng, M. Dubosc et al., Alternating and diblock donor-acceptor conjugated polymers based on diindeno[1,2-b:2′,1′-d]thiophene Structure: synthesis, characterization, and photovoltaic applications. Chem-Asian J 5(12), 2483–2492 (2010)

    Google Scholar 

  116. Y.J. Cheng, C.H. Chen, Y.S. Lin et al., Ladder-type nonacyclic structure consisting of alternate thiophene and benzene units for efficient conventional and inverted organic photovoltaics. Chem. Mater. 23(22), 5068–5075 (2011)

    Google Scholar 

  117. G. Subramanian, P.V. Schleyer, H. Jiao, Are the most stable fused heterobicycles the most aromatic? Angew. Chem. Int. Ed. Engl. 35(22), 2638–2641 (1996)

    Google Scholar 

  118. Y.J. Cheng, S.W. Cheng, C.Y. Chang et al., Diindenothieno[2,3-b]thiophene arene for efficient organic photovoltaics with an extra high open-circuit voltage of 1.14 ev. Chem. Commun. 48(26), 3203–3205 (2012)

    Google Scholar 

  119. M. Svensson, F. Zhang, S.C. Veenstra et al., High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv. Mater. 15(12), 988–991 (2003)

    Google Scholar 

  120. N. Blouin, A. Michaud, D. Gendron et al., Toward a rational design of poly(2,7-Carbazole) derivatives for solar cells. J. Am. Chem. Soc. 130(2), 732–742 (2007)

    Google Scholar 

  121. J.S. Wu, Y.J. Cheng, M. Dubosc et al., Donor-acceptor polymers based on multi-fused heptacyclic structures: synthesis, characterization and photovoltaic applications. Chem. Commun. 46(19), 3259–3261 (2010)

    Google Scholar 

  122. Y.J. Cheng, J.S. Wu, P.I. Shih et al., Carbazole-based ladder-type heptacylic arene with aliphatic side chains leading to enhanced efficiency of organic photovoltaics. Chem. Mater. 23(9), 2361–2369 (2011)

    Google Scholar 

  123. C.Y. Chang, Y.J. Cheng, S.H. Hung et al., Combination of molecular, morphological, and interfacial engineering to achieve highly efficient and stable plastic solar cells. Adv. Mater. 24(4), 549–553 (2012)

    Google Scholar 

  124. Y.-J. Cheng, C.-H. Hsieh, Y. He et al., Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. J. Am. Chem. Soc. 132(49), 17381–17383 (2010)

    Google Scholar 

  125. J.S. Wu, Y.J. Cheng, T.Y. Lin et al., Dithienocarbazole-based ladder-type heptacyclic arenes with silicon, carbon, and nitrogen bridges: synthesis, molecular properties, field-effect transistors, and photovoltaic applications. Adv. Funct. Mater. 22(8), 1711–1722 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chain-Shu Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheng, YJ., Wang, CL., Wu, JS., Hsu, CS. (2015). Recent Advances in P-Type Conjugated Polymers for High-Performance Solar Cells. In: Yang, Y., Li, G. (eds) Progress in High-Efficient Solution Process Organic Photovoltaic Devices. Topics in Applied Physics, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45509-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45509-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45508-1

  • Online ISBN: 978-3-662-45509-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics