Skip to main content

Improvement of Charge Transfer Between Electrode and Semiconductor by Thin Metal Oxide Insertion

  • Chapter
  • First Online:
Progress in High-Efficient Solution Process Organic Photovoltaic Devices

Part of the book series: Topics in Applied Physics ((TAP,volume 130))

Abstract

Efficient charge transfer at semiconductor and electrode interface is one of the most crucial issues for the performance of any electronic device. A counter intuitive phenomenon of transfer improvement by insertion of a thin metal oxide film at the semiconductor and electrode interface has gained much attention recently. In this chapter, we will describe our understanding of the mechanism of performance improvement with such insertions based on our surface analytical investigations. We will start by introducing the measurement techniques utilized in our investigations. We will discuss results on the insertion of a thin layer of MoOx between indium tin oxide (ITO) and two well studied organic semiconductors, and demonstrate that the optimum insertion layer thickness is just a few nanometers. We will also illustrate the importance of high vacuum during the deposition of such insertion layers and the impact of exposure on device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Bardeen, W.H. Brattain, Phys. Rev. 74, 230 (1948)

    Article  Google Scholar 

  2. S. M. Sze, Curr. Contents Eng. Technol. Appl. Sci 28 (1982)

    Google Scholar 

  3. J. Millman, Integrated Electronics (McGraw Hill, New Delhi, 1991)

    Google Scholar 

  4. Z. Kafafi, Organic Electroluminescence (CRC Taylor & Francis, Boca Raton, 2005)

    Book  Google Scholar 

  5. G. Li, R. Zhu, Y. Yang, Nat. Photonics 6, 153 (2012)

    Article  Google Scholar 

  6. S.R. Forrest, MRS Bull. 30, 28 (2005)

    Article  Google Scholar 

  7. G.P. Crawford, Flexible Flat Panel Displays (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  8. Sony Website, www.sony.com/oledmonitors

  9. Samsung Website, www.oled-info.com/samsung-oled

  10. DOE Website, in solid state lighting

    Google Scholar 

  11. M. Pope, C.E. Swenberg, Annu. Rev. Phys. Chem. 35, 613 (1984)

    Article  Google Scholar 

  12. C.W. Tang, S.A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987)

    Article  Google Scholar 

  13. C.W. Tang, S.A. Vanslyke, C.H. Chen, J. Appl. Phys. 65, 3610 (1989)

    Article  Google Scholar 

  14. R.H. Friend et al., Nature 397, 121 (1999)

    Article  Google Scholar 

  15. M.G. Helander, Z.B. Wang, J. Qiu, M.T. Greiner, D.P. Puzzo, Z.W. Liu, Z.H. Lu, Science 332, 944 (2011)

    Article  Google Scholar 

  16. Z.B. Wang, M.G. Helander, J. Qiu, D.P. Puzzo, M.T. Greiner, Z.M. Hudson, S. Wang, Z.W. Liu, Z.H. Lu, Nat. Photonics 5, 753 (2011)

    Article  Google Scholar 

  17. F. So, J. Kido, P. Burrows, MRS Bull. 33, 663 (2008)

    Article  Google Scholar 

  18. C.W. Tang, Appl. Phys. Lett. 48, 183 (1986)

    Article  Google Scholar 

  19. J.G. Xue, S. Uchida, B.P. Rand, S.R. Forrest, Appl. Phys. Lett. 84, 3013 (2004)

    Article  Google Scholar 

  20. Y. Sun, G.C. Welch, W.L. Leong, C.J. Takacs, G.C. Bazan, A.J. Heeger, Nat. Mater. 11, 44 (2012)

    Article  Google Scholar 

  21. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995)

    Article  Google Scholar 

  22. N. Website, (2012) http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

  23. V.C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R.L. Willett, T. Someya, M.E. Gershenson, J.A. Rogers, Science 303, 1644 (2004)

    Article  Google Scholar 

  24. G. Horowitz, J. Mater. Res. 19, 1946 (2004)

    Article  Google Scholar 

  25. V. Podzorov, S.E. Sysoev, E. Loginova, V.M. Pudalov, M.E. Gershenson, Appl. Phys. Lett. 83, 3504 (2003)

    Article  Google Scholar 

  26. V. Podzorov, V.M. Pudalov, M.E. Gershenson, Appl. Phys. Lett. 82, 1739 (2003)

    Article  Google Scholar 

  27. C.R. Crowell, Surf. Sci. 13, 13 (1969)

    Article  Google Scholar 

  28. E.M. Liston, L. Martinu, M.R. Wertheimer, J. Adhes. Sci. Technol. 7, 1091 (1993)

    Article  Google Scholar 

  29. C. Sequin, E. Baldinge, Solid-State Electronics 13, 1527 (1970)

    Article  Google Scholar 

  30. S. Tokito, K. Noda, Y. Taga, J. Phys. D-Appl. Phys. 29, 2750 (1996)

    Article  Google Scholar 

  31. V. Shrotriya, G. Li, Y. Yao, C.W. Chu, Y. Yang, Applied Physics Letters 88, 073508 (2006)

    Article  Google Scholar 

  32. M.D. Irwin, B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks, Proc. Natl. Acad. Sci. USA 105, 2783 (2008)

    Article  Google Scholar 

  33. I. Irfan, W. Xia, H. Lin, H.J. Ding, C.W. Tang, Y.L. Gao, Thin Solid Films. 520:1988 (2012)

    Google Scholar 

  34. X.N. Li, D.W. Niles, F.S. Hasoon, R.J. Matson, P. Sheldon, J. Vac. Sci. Technol.a-Vac. Surf. Films 17, 805 (1999)

    Article  Google Scholar 

  35. H. Lin, W. Irfan, HNWu Xia, Y. Gao, C.W. Tang, Sol. Energy Mater. Sol. Cells 99, 349 (2012)

    Article  Google Scholar 

  36. W. Chen, S. Chen, H. Huang, D. C. Qi, X. Y. Gao, A. T. S. Wee, Appl. Phys. Lett. 92 (2008)

    Google Scholar 

  37. W. Chen, H. Huang, S. Chen, Y.L. Huang, X.Y. Gao, A.T.S. Wee, Chem. Mater. 20, 7017 (2008)

    Article  Google Scholar 

  38. W. Chen, D.-C. Qi, H. Huang, X. Gao, A.T.S. Wee, Adv. Funct. Mater. 21, 410 (2011)

    Article  Google Scholar 

  39. W. Chen, D. Qi, X. Gao, A.T.S. Wee, Prog. Surf. Sci. 84, 279 (2009)

    Article  Google Scholar 

  40. Y.L. Gao, Mater. Sci. Eng. R-Rep. 68, 39 (2010)

    Article  Google Scholar 

  41. H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 11, 605 (1999)

    Article  Google Scholar 

  42. I. Irfan, H. Ding, Y. Gao, D. Y. Kim, J. Subbiah, F. So, Appl. Phys. Lett. 96 (2010)

    Google Scholar 

  43. Irfan, H. Ding, Y. Gao, C. Small, D. Y. Kim, J. Subbiah, and F. So, App. Phys. Lett. 96 (2010)

    Google Scholar 

  44. I. Irfan, H. Ding, F. So, Y. Gao, J. Photonics Energy 1, 011105 (2011)

    Article  Google Scholar 

  45. I. Irfan, Y. Gao, J. Photonics Energy Accepted 2, 021213 (2012)

    Google Scholar 

  46. D. Y. Kim, J. Subbiah, G. Sarasqueta, F. So, H. Ding, Irfan, Y. Gao, Appl. Phys. Lett. 95 (2009)

    Google Scholar 

  47. A. Einstein, Ann. Phys. 17, 132 (1905)

    Article  Google Scholar 

  48. H.Y. Fan, Phys. Rev. 68, 43 (1945)

    Article  Google Scholar 

  49. F. Reinert, S. Hufner, New J. Phys. 7 (2005)

    Google Scholar 

  50. M.P. Seah, W.A. Dench, Surf. Interface Anal. 1, 2 (1979)

    Article  Google Scholar 

  51. J.B. Peel, E.I. Vonnagyfelsobuki, J. Chem. Educ. 64, 463 (1987)

    Article  Google Scholar 

  52. P.T. Andrews, I.R. Collins, Phys. Scr. T29, 116 (1989)

    Article  Google Scholar 

  53. D.X. Dai, J.H. Hu, Z.J. Yang, Vacuum 41, 525 (1990)

    Article  Google Scholar 

  54. F.J. Himpsel, Surf. Sci. Rep. 12, 1 (1990)

    Article  Google Scholar 

  55. P.D. Johnson, S.L. Hulbert, Rev. Sci. Instrum. 61, 2277 (1990)

    Article  Google Scholar 

  56. N.V. Smith, Rep. Prog. Phys. 51, 1227 (1988)

    Article  Google Scholar 

  57. M. Kroeger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Appl. Phys. Lett. 95, 123301 (2009)

    Google Scholar 

  58. F. Wang, X. Qiao, T. Xiong, D. Ma, Org. Electron. 9, 985 (2008)

    Article  Google Scholar 

  59. M. Kroger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Org. Electron. 10, 932 (2009)

    Article  Google Scholar 

  60. D.Y. Kim, G. Sarasqueta, F. So, Sol. Energy Mater. Sol. Cells 93, 1452 (2009)

    Article  Google Scholar 

  61. L. Cattin, et al., J. Appl. Phys. 105, 034507 (2009)

    Google Scholar 

  62. F. Cheng, G. Fang, X. Fan, N. Liu, N. Sun, P. Qin, Q. Zheng, J. Wan, X. Zhao, Sol. Energy Mater. Sol. Cells 95, 2914 (2011)

    Article  Google Scholar 

  63. D.W. Zhao, S.T. Tan, L. Ke, P. Liu, A.K.K. Kyaw, X.W. Sun, G.Q. Lo, D.L. Kwong, Sol. Energy Mater. Sol. Cells 94, 985 (2010)

    Article  Google Scholar 

  64. W. Zeng, K.S. Yong, Z.M. Kam, Z.-K. Chen, Y. Li, Synth. Met. 161, 2748 (2012)

    Article  Google Scholar 

  65. T. Hori, T. Shibata, V. Kittichungchit, H. Moritou, J. Sakai, H. Kubo, A. Fujii, M. Ozaki, Thin Solid Films 518, 522 (2009)

    Article  Google Scholar 

  66. J. Subbiah, C.M. Amb, I. Irfan, Y. Gao, J.R. Reynolds, F. So, ACS Appl Mater Interfaces 4, 866 (2012)

    Article  Google Scholar 

  67. J. Subbiah, D. Y. Kim, M. Hartel, F. So, Applied Physics Letters 96, 063303 (2010)

    Google Scholar 

  68. Y. Nakayama, K. Morii, Y. Suzuki, H. Machida, S. Kera, N. Ueno, H. Kitagawa, Y. Noguchi, H. Ishii, Adv. Funct. Mater. 19, 3746 (2009)

    Article  Google Scholar 

  69. M. Kroeger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Appl. Phys. Lett. 95, 123301 (2009)

    Google Scholar 

  70. Y. Kinoshita, R. Takenaka, and H. Murata, Applied Physics Letters 92, 123301 (2008)

    Google Scholar 

  71. F. Werfel, E. Minni, J. Phys. C-Solid State Phys. 16, 6091 (1983)

    Article  Google Scholar 

  72. M. Sayer, A. Mansingh, J.B. Webb, J. Noad, J. Phys. C-Solid State Phys. 11, 315 (1978)

    Article  Google Scholar 

  73. Y. Nakayama, K. Morii, Y. Suzuki, H. Machida, S. Kera, N. Ueno, H. Kitagawa, Y. Noguchi, H. Ishii, Adv. Funct. Mater. 19, 3746 (2009)

    Article  Google Scholar 

  74. M. Zhang, Irfan, H. Ding, Y. Gao, and C. W. Tang, Appl. Phys. Lett. 96 (2010)

    Google Scholar 

  75. S. Yoon, Appl. Phys. Lett. 92, 143504 (2008)

    Article  Google Scholar 

  76. V. Maria, Appl. Phys. Lett. 98, 123301 (2010)

    Google Scholar 

  77. J. Meyer, A. Shu, M. Kroeger, A. Kahn, Appl. Phys. Lett. 96 (2010)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the National Science Foundation Grant no. DMR-1006098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Irfan, I., Gao, Y. (2015). Improvement of Charge Transfer Between Electrode and Semiconductor by Thin Metal Oxide Insertion. In: Yang, Y., Li, G. (eds) Progress in High-Efficient Solution Process Organic Photovoltaic Devices. Topics in Applied Physics, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45509-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45509-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45508-1

  • Online ISBN: 978-3-662-45509-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics