Advertisement

GrOD: Graph-based Ontology Debugging System

  • Xuefeng FuEmail author
  • Yong Zhang
  • Guilin Qi
Conference paper
  • 637 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 480)

Abstract

In this paper, we present GrOD, a Graph-based Ontology Debugging System for DL-Lite ontologies, which implements a graph-based algorithm for ontology debugging. GrOD encodes ontology into directed graph and stores them in Neo4j graph database. It debugs incoherence of the ontology by finding whether there exist two paths that from common node to two disjoint nodes respectively on the graph. Our demonstration will illustrate functionalities of GrOD for computing MUPS (minimal unsatisfiablility-preserving subterminology) and MIPS (minimal incoherence-preserving subterminology).

Keywords

Ontology Debugging Grodal Neo4j Graph Database Inclusion Assertions Unsatisfiable Concepts 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning 39(3), 385–429 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Gao, S., Qi, G., Wang, H.: A new operator for abox revision in DL-Lite. In: Proceedings of AAAI’12, pp. 2423–2424 (2012)Google Scholar
  4. 4.
    Lembo, D., Santarelli, V., Savo, D.F.: Graph-based ontology classification in OWL 2 QL. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 320–334. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proceedings of WWW’05, pp. 633–640. ACM (2005)Google Scholar
  6. 6.
    Qi, G., Hunter, A.: Measuring incoherence in description logic-based ontologies. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 381–394. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Robinson, I., Webber, J., Eifrem, E.: Graph databases, pp. 25–63. O’Reilly Media Inc.,(2013)Google Scholar
  8. 8.
    Schlobach, S., Huang, Z., Cornet, R., Van Harmelen, F.: Debugging incoherent terminologies. J. Autom. Reasoning 39(3), 317–349 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Webber, J.: A programmatic introduction to neo4j. In Proceedings of SPLASH’12, pp. 217–218 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringSoutheast UniversityNanjingChina

Personalised recommendations