Advertisement

A Semi-supervised Learning Approach for Ontology Matching

  • Zhichun WangEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 480)

Abstract

Ontology matching is the task of finding correspondences between semantically related entities in different ontologies, which is a key solution to the semantic heterogeneity problem. Recently, several supervised learning approaches for ontology matching have been proposed, which outperform traditional unsupervised approaches. The existing learning based approaches treat the similarity values of matchers as normal numerical features, and need a lot of training examples. In this paper, we propose a semi-supervised learning approach for ontology matching. Our approach needs a small set of training examples, and exploit the dominant relation of similarity metrics to enrich the training examples. A label propagation algorithm is used to determine the matching results. Experimental results show that our approach can achieve good matching results with a few training examples.

Keywords

Ontology matching Semi-supervised learning Heterogeneity 

Notes

Acknowledgement

The work is supported by NSFC (No. 61202246), NSFC-ANR (No. 61261130588), and the Fundamental Research Funds for the Central Universities (2013NT56).

References

  1. 1.
    Do, H.-H., Rahm, E.: Coma: a system for flexible combination of schema matching approaches. In: Proceedings of the 28th International Conference on Very Large Data Bases (VLDB ’02), pp. 610–621 (2002)Google Scholar
  2. 2.
    Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning to match ontologies on the semantic web. VLDB J. 12, 303–319 (2003)CrossRefGoogle Scholar
  3. 3.
    Duan, S., Fokoue, A., Srinivas, K.: One size does not fit all: customizing ontology alignment using user feedback. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 177–192. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Eckert, K., Meilicke, C., Stuckenschmidt, H.: Improving ontology matching using meta-level learning. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 158–172. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Ehrig, M.: Foam - framework for ontology alignment and mapping; results of the ontology alignment initiative. In: Proceedings of Integrating Ontologies Workshop (2005)Google Scholar
  6. 6.
    Ehrig, M., Staab, S., Sure, Y.: Framework for ontology alignment and mappingGoogle Scholar
  7. 7.
    Ehrig, M., Staab, S., Sure, Y.: Bootstrapping ontology alignment methods with apfel. In: Special Interest Tracks and Posters of the 14th International Conference on World Wide Web, WWW ’05, New York, NY, USA, pp. 1148–1149. ACM (2005)Google Scholar
  8. 8.
    Euzenat, J., Shvaiko, P.: Ontology Matching, 1st edn. Springer, New York (2007)zbMATHGoogle Scholar
  9. 9.
    Giuseppe, P., Talia, D.: Ufome: an ontology mapping system with strategy prediction capabilities. Data Knowl. Eng. 69(5), 444–471 (2010)CrossRefGoogle Scholar
  10. 10.
    Hu, W., Falcon-ao, Y.Q.: A practical ontology matching system. Web Semant. Sci. Serv. Agents World Wide Web 6(3), 237–239 (2008)CrossRefGoogle Scholar
  11. 11.
    Isabel, F.P.A., Cruz, F., Stroe, C.: Efficient selection of mappings and automatic quality-driven combination of matching methods. In: Workshop on Ontology Matching, pp. 49–60 (2009)Google Scholar
  12. 12.
    Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology matching with semantic verification. Web Semant. Sci. Serv. Agents World Wide Web 7(3), 235–251 (2009)CrossRefGoogle Scholar
  13. 13.
    Li, J., Tang, J., Li, Y., Luo, Q.: Rimom: a dynamic multistrategy ontology alignment framework. IEEE Trans. Knowl. Data Eng. 21(8), 1218–1232 (2009)CrossRefGoogle Scholar
  14. 14.
    Mao, M., Peng, Y., Spring, M.: An adaptive ontology mapping approach with neural network based constraint satisfaction. Web Semant. Sci. Serv. Agents World Wide Web 8(1), 14–25 (2010)CrossRefGoogle Scholar
  15. 15.
    Peukert, E., Mamann, S., Knig, K.: Comparing similarity combination methods for schema matching. In: GI Jahrestagung (1)’10, pp. 692–701 (2010)Google Scholar
  16. 16.
    Tang, J., Li, J., Liang, B., Huang, X., Li, Y., Wang, K.: Using bayesian decision for ontology mapping. Web Semant. 4(4), 243–262 (2006)CrossRefGoogle Scholar
  17. 17.
    Wu, M.: Label propagation for classification and ranking. Ph.D. thesis, East Lansing, MI, USA. AAI3282228 (2007)Google Scholar
  18. 18.
    Zhu, X.: Semi-supervised learning with graphs. Ph.D. thesis, Pittsburgh, PA, USA. AAI3179046 (2005)Google Scholar
  19. 19.
    Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and harmonic functions. In:ICML, pp. 912–919 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.College of Information Science and TechnologyBeijing Normal UniversityBeijingChina

Personalised recommendations