Evidence-Based Clinical Guidelines in SemanticCT

  • Qing HuEmail author
  • Zhisheng Huang
  • Frank van Harmelen
  • Annette ten Teije
  • Jinguang Gu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 480)


Evidence-based Clinical Guidelines are the document or recommendation which follow a rigorous development process and are based on the highest quality scientific evidence. Evidence-based clinical guidelines are important knowledge resources which have been used in many medical decision support systems and medical applications. In this paper, we present a semantic approach of evidence-based clinical guidelines. That lightweight formalisation of clinical guidelines have been integrated with SemanticCT, a semantically-enabled system for clinical trials. We have developed several tools to generate semantic data from textual guidelines. We show how they are useful in SemanticCT for the applications of the Semantic Web technology in medical domains.


Evidence-based Clinical Guidelines Textual Guidelines Semantically-enabled System Important Knowledge Resources Medical Decision Support Systems 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is partially supported by the European Commission under the 7th framework programme EURECA Project (FP7-ICT-2011-7, Grant 288048).


  1. 1.
    Ait-Mokhtar, S., Bruijn, B.D., Hagege, C., Rupi, P.: Initial prototype for relation identification between concepts. D3.2. Technical report, EURECA Project (2013)Google Scholar
  2. 2.
    Aït-Mokhtar, S., Chanod, J.-P., Roux, C.: Robustness beyond shallowness: incremental deep parsing. Nat. Lang. Eng. 8(2), 121–144 (2002)Google Scholar
  3. 3.
    Claerhout, B., De Schepper, K., et al.: Initial eureca architecture. D2.2. Technical report, EURECA Project (2013)Google Scholar
  4. 4.
    Fox, J., Johns, N., Lyons, C., Rahmanzadeh, A., Thomson, R., Wilson, P.: Proforma: a general technology for clinical decision support systems. Comput. Methods Programs Biomed. 54, 59–67 (1997)CrossRefGoogle Scholar
  5. 5.
    Fox, J., Johns, N., Rahmanzadeh, A., Thomson, R.: Proforma, approaches for creating computer-interpretable guidelines that facilitate decision support. In: Proceedings of Medical Informatics Europe, Amsterdam (1996)Google Scholar
  6. 6.
    Huang, Z., ten Teije, A., van Harmelen, F.: Rule-based formalization of eligibility criteria for clinical trials. In: Peek, N., Marín Morales, R., Peleg, M. (eds.) AIME 2013. LNCS, vol. 7885, pp. 38–47. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Huang, Z., ten Teije, A., van Harmelen, F.: SemanticCT: a semantically-enabled system for clinical trials. In: Riaño, D., Lenz, R., Miksch, S., Peleg, M., Reichert, M., ten Teije, A. (eds.) KGC 2013 and ProHealth 2013. LNCS (LNAI), vol. 8268, pp. 11–25. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Huang, Z., ten Teije, A., van Harmelen, F., Ait-Mokhtar, S.: Semantic representation of evidence-based clinical guidelines. In: Proceedings of 6th International Workshop on Knowledge Representation for Health Care (KR4HC’14) (2014)Google Scholar
  9. 9.
    Huang, Z., van Harmelen, F., ten Teije, A., Dekker, A.: Feasibility estimation for clinical trials. In: Proceedings of the 7th International Conference on Health Informatics (HEALTHINF2014), Angers, Loire Valley, France, 3–6 March 2014Google Scholar
  10. 10.
    Lindberg, D., Humphreys, B., McCray, A.: The unified medical language system. Methods Inf. Med. 32(4), 281–291 (1993)Google Scholar
  11. 11.
    NABON: Breast cancer, Dutch guideline, version 2.0. Technical report, Integraal kankercentrum Netherland, Nationaal Borstkanker Overleg Nederland (2012)Google Scholar
  12. 12.
    NSRS: Guideline complex regional pain syndrome type i. Technical report, Netherlands Society of Rehabilitation Specialists (2006)Google Scholar
  13. 13.
    Peleg, M., Boxwala, A., Ogunyemi, O., et al.: Glif3: the evolution of a guideline representation format. In: Proceedings of AMIA Annual Fall Symposium, pp. 645–649 (2000)Google Scholar
  14. 14.
    Peleg, M., Boxwala, A., Tu, S., Ogunyemi, O., Zeng, Q., Wang, D.: Guideline interchange format 3.4. Technical report (2001)Google Scholar
  15. 15.
    Shahar, Y., Miksch, S., Johnson, P.: The asgaard project: a task specific framework for the application and critiquing of time oriented clinical guidelines. Artif. Intell. Med. 14, 29–51 (1998)CrossRefGoogle Scholar
  16. 16.
    Tu, S., Musen, M.: A flexible approach to guideline modeling. In: Proceedings of 1999 AMIA Symposium, pp. 420–424 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Qing Hu
    • 1
    • 2
    Email author
  • Zhisheng Huang
    • 1
  • Frank van Harmelen
    • 1
  • Annette ten Teije
    • 1
  • Jinguang Gu
    • 2
  1. 1.Department of Computer ScienceVU University AmsterdamAmsterdamThe Netherlands
  2. 2.Faculty of Computer Science and EngineeringWuhan University of Science and TechnologyWuhanChina

Personalised recommendations