SPARQL Query Recommendation for Exploring RDF Repositories

  • Boliang ChenEmail author
  • Jing Mei
  • Wen Sun
  • Ruilong Su
  • Haofen Wang
  • Gang Hu
  • Guotong Xie
  • Yong Yu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 480)


With the rapid development of Semantic Web, more and more RDF repositories, such as Linking Open Data (LOD), are available on the web. Generally, there are two services provided for exploring those RDF repositories, one is the keyword lookup, and the other is the SPARQL endpoint. Most users choose the lookup service, and millions of web logs have been recorded. Although, users expect to submit more expressive queries than keyword lookup, the complexity of SPARQL undoubtedly scared users away. This paper proposes a method of SPARQL query recommendation for exploring RDF repositories. By analyzing web logs of the lookup service, our method extracts the user access patterns, which will be used to recommend SPARQL queries. We implement our method based on, a Chinese RDF repository with about 150 million triples as well as over one-year web logs. We believe the proposed method will further facilitate the SPARQL query research.


RDF repository SPARQL query Recommendation system 


  1. 1.
    Agosti, M., Crivellari, F., Di Nunzio, G.M.: Web log analysis: a review of a decade of studies about information acquisition, inspection and interpretation of user interaction. Data Min. Knowl. Disc. 24(3), 663–696 (2012)CrossRefGoogle Scholar
  2. 2.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  4. 4.
    Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inf. 41(5), 706–716 (2008)CrossRefGoogle Scholar
  5. 5.
    Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked data on the web (ldow2008). In: Proceedings of the 17th International Conference on World Wide Web, pp. 1265–1266. ACM (2008)Google Scholar
  6. 6.
    Bornea, M.A., Dolby, J., Kementsietsidis, A., Srinivas, K., Dantressangle, P., Udrea, O., Bhattacharjee, B.: Building an efficient RDF store over a relational database. In: Proceedings of the 2013 International Conference on Management of Data, pp. 121–132. ACM (2013)Google Scholar
  7. 7.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 43–52. Morgan Kaufmann Publishers Inc. (1998)Google Scholar
  8. 8.
    Bridge, D., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender systems. Knowl. Eng. Rev. 20(3), 315–320 (2005)CrossRefGoogle Scholar
  9. 9.
    Burke, R.: Knowledge-based recommender systems. Encycl. Libr. Inf. Syst. 69(Suppl. 32), 175–186 (2000)Google Scholar
  10. 10.
    Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Chuang, S.L., Chien, L.F.: Enriching web taxonomies through subject categorization of query terms from search engine logs. Decis. Support Syst. 35(1), 113–127 (2003)CrossRefGoogle Scholar
  12. 12.
    Chuang, S.L., Pu, H.T., Lu, W.H., Chien, L.F.: Auto-construction of a live thesaurus from search term logs for interactive web search (poster session). In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 334–336. ACM (2000)Google Scholar
  13. 13.
    Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Query expansion by mining user logs. IEEE Trans. Knowl. Data Eng. 15(4), 829–839 (2003)CrossRefGoogle Scholar
  14. 14.
    Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Probabilistic query expansion using query logs. In: Proceedings of the 11th International Conference on World Wide Web, pp. 325–332. ACM (2002)Google Scholar
  15. 15.
    Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. (TOIS) 22(1), 89–115 (2004)CrossRefGoogle Scholar
  16. 16.
    Huang, C.C., Chuang, S.L., Chien, L.F.: Using a web-based categorization approach to generate thematic metadata from texts. ACM Trans. Asian Lang. Inf. Process. (TALIP) 3(3), 190–212 (2004)CrossRefGoogle Scholar
  17. 17.
    Jannach, D., Friedrich, G.: Tutorial: Recommender systems. In: Proceedings of the International Joint Conference on Artificial Intelligence, Barcelona (2011)Google Scholar
  18. 18.
    McBride, B.: Jena: a semantic web toolkit. IEEE Internet Comput. 6(6), 55–59 (2002)CrossRefGoogle Scholar
  19. 19.
    Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF data. VLDB J. 19(1), 91–113 (2010)CrossRefGoogle Scholar
  20. 20.
    Nitta, K., Savnik, I.: Survey of RDF storage managers. In: DBKDA 2014, The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications, pp. 148–153 (2014)Google Scholar
  21. 21.
    Niu, X., Sun, X., Wang, H., Rong, S., Qi, G., Yu, Y.: - weaving chinese linking open data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part II. LNCS, vol. 7032, pp. 205–220. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  24. 24.
    Ricci, F., Cavada, D., Mirzadeh, N., Venturini, A.: Case-based travel recommendations. In: Wober, K.W., Frew, A., Hitz, M. (eds.) Destination Recommendation Systems: Behavioural Foundations and Applications, pp. 67–93. CABI Publishing, Wallingford (2006)CrossRefGoogle Scholar
  25. 25.
    Sakr, S., Al-Naymat, G.: Relational processing of RDF queries: a survey. SIGMOD Rec. 38(4), 23–28 (2010). CrossRefGoogle Scholar
  26. 26.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM (2001)Google Scholar
  27. 27.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Zhang, Z., Nasraoui, O.: Mining search engine query logs for query recommendation. In: Proceedings of the 15th International Conference on World Wide Web, pp. 1039–1040. ACM (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Boliang Chen
    • 1
    Email author
  • Jing Mei
    • 2
  • Wen Sun
    • 2
  • Ruilong Su
    • 1
  • Haofen Wang
    • 3
  • Gang Hu
    • 2
  • Guotong Xie
    • 2
  • Yong Yu
    • 1
  1. 1.Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.IBM China Research LabBeijingChina
  3. 3.East China University of Science and TechnologyShanghaiChina

Personalised recommendations