Skip to main content

Applying Mean-Field Approximation to Continuous Time Markov Chains

  • Chapter
  • 1024 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8453))

Abstract

The mean-field analysis technique is used to perform analysis of a system with a large number of components to determine the emergent deterministic behaviour and how this behaviour modifies when its parameters are perturbed. The computer science performance modelling and analysis community has found the mean-field method useful for modelling large-scale computer and communication networks. Applying mean-field analysis from the computer science perspective requires the following major steps: (1) describing how the agent populations evolve by means of a system of differential equations, (2) finding the emergent deterministic behaviour of the system by solving such differential equations, and (3) analysing properties of this behaviour. Depending on the system under analysis, performing these steps may become challenging. Often, modifications of the general idea are needed. In this tutorial we consider illustrating examples to discuss how the mean-field method is used in different application areas. Starting from the application of the classical technique, moving to cases where additional steps have to be used, such as systems with local communication. Finally, we illustrate the application of existing model checking analysis techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baccelli, F., Karpelevich, F.I., Kelbert, M.Y., Puhalskii, A.A., Rybko, A.N., Suhov, Y.M.: A mean-field limit for a class of queueing networks. Journal of Statistical Physics 66, 803–825 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(7), 524–541 (2003)

    Article  MATH  Google Scholar 

  3. Benaïm, M., Le Boudec, J.Y.: A class of mean field interaction models for computer and communication systems. Perform. Eval. 65(11-12), 823–838 (2008)

    Article  Google Scholar 

  4. Benaïm, M., Weibull, J.W.: Deterministic approximation of stochastic evolution in games. Econometrica 71(3), 873–903 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Billingsley, P.: Probability and Measure, 3rd edn. Wiley-Interscience (1995)

    Google Scholar 

  6. Bobbio, A., Gribaudo, M., Telek, M.: Analysis of large scale interacting systems by mean field method. In: QEST, pp. 215–224 (2008)

    Google Scholar 

  7. Bortolussi, L.: Hybrid limits of continuous time Markov chains. In: QEST, pp. 3–12. IEEE Computer Society (2011)

    Google Scholar 

  8. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective systems behaviour: A tutorial. Performance Evaluation 70(5), 317–349 (2013)

    Article  Google Scholar 

  10. Cabspotting, http://stamen.com/clients/cabspotting

  11. Chaintreau, A., Le Boudec, J.Y., Ristanovic, N.: The age of gossip: spatial mean field regime. In: SIGMETRICS/Performance, pp. 109–120. ACM (2009)

    Google Scholar 

  12. Ciocchetta, F., Hillston, J.: Bio-pepa: A framework for the modelling and analysis of biological systems. Theoretical Computer Science 410(33-34), 3065–3084 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Darling, R.W.R., Norris, J.R.: Differential equation approximations for Markov chains. Probability Surveys 5, 37–79 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deavours, D.D., Clark, G., Courtney, T., Daly, D., Derisavi, S., Doyle, J.M., Sanders, W.H., Webster, P.G.: The Mobius framework and its implementation. IEEE Transactions on Software Engineering 28(10), 956–969 (2002)

    Article  Google Scholar 

  15. Gast, N., Gaujal, B.: A mean field model of work stealing in large-scale systems. In: SIGMETRICS, pp. 13–24. ACM (2010)

    Google Scholar 

  16. Gillespie, C.S.: Moment closure approximations for mass-action models. IET Systems Biology 3, 52–58 (2009)

    Article  Google Scholar 

  17. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  18. Hayden, R., Stefanek, A., Bradley, J.T.: Fluid computation of passage time distributions in large Markov models. Theoretical Computer Science 413(1), 106–141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a markovian process algebra. Theoretical Computer Science 411(22-24), 2260–2297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hillston, J.: A compositional approach to performance modelling. Cambridge University Press (1996)

    Google Scholar 

  21. Hillston, J.: Fluid flow approximation of pepa models. In: QEST, pp. 33–43. IEEE Computer Society (2005)

    Google Scholar 

  22. Hillston, J., Tribastone, M., Gilmore, S.: Stochastic process algebras: From individuals to populations. The Computer Journal (2011)

    Google Scholar 

  23. Kadanoff, L.P.: More is the Same; Phase Transitions and Mean Field Theories. Journal of Statistical Physics 137, 777–797 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kleczkowski, A., Grenfell, B.T.: Mean-field-type equations for spread of epidemics: the small world model. Physica A: Statistical Mechanics and its Applications 274(12), 355–360 (1999)

    Article  Google Scholar 

  25. Kolesnichenko, A., de Boer, P.T., Remke, A.K.I., Haverkort, B.R.: A logic for model-checking mean-field models. In: DSN/PDF, pp. 1–12. IEEE Computer Society (2013)

    Google Scholar 

  26. Kolesnichenko, A., Remke, A., de Boer, P.-T., Haverkort, B.R.: Comparison of the mean-field approach and simulation in a peer-to-peer botnet case study. In: Thomas, N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 133–147. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump Markov processes. Journal of Applied Probability 7(1), 49–58 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kurtz, T.G.: Approximation of population processes, vol. 36. Society for Industrial Mathematics (1981)

    Google Scholar 

  29. Latella, D., Loreti, M., Massink, M.: On-the-fly Fast Mean-Field Model-Checking: Extended Version. Technical report (2013)

    Google Scholar 

  30. Le Boudec, J.Y., McDonald, D., Mundinger, J.: A generic mean field convergence result for systems of interacting objects. In: QEST, pp. 3–18. IEEE Computer Society (2007)

    Google Scholar 

  31. McComb, W.D.: Renormalization Methods: A Guide For Beginners. OUP, Oxford (2004)

    Google Scholar 

  32. Mitzenmacher, M.: The power of two choices in randomized load balancing. IEEE Trans. Parallel Distrib. Syst. 12(10), 1094–1104 (2001)

    Article  Google Scholar 

  33. Pourranjbar, A., Hillston, J., Bortolussi, L.: Dont Just Go with the Flow: Cautionary Tales of Fluid Flow Approximation. In: Tribastone, M., Gilmore, S. (eds.) EPEW/UKPEW 2012. LNCS, vol. 7587, pp. 156–171. Springer, Heidelberg (2013)

    Google Scholar 

  34. Silva, M., Recalde, L.: On fluidification of petri nets: from discrete to hybrid and continuous models. Annual Reviews in Control 28(2), 253–266 (2004)

    Article  Google Scholar 

  35. Tribastone, M.: Relating layered queueing networks and process algebra models. In: WOSP/SIPEW, pp. 183–194 (2010)

    Google Scholar 

  36. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra models. IEEE Trans. Software Eng. 38(1), 205–219 (2012)

    Article  Google Scholar 

  37. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland Personal Library. Elsevier Science (2011)

    Google Scholar 

  38. van Ruitenbeek, E., Sanders, W.H.: Modeling peer-to-peer botnets. In: QEST, pp. 307–316. IEEE CS Press (2008)

    Google Scholar 

  39. Wolfram Research, Inc. Mathematica tutorial (2010), http://reference.wolfram.com/mathematica/tutorial/IntroductionToManipulate.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolesnichenko, A., Senni, V., Pourranjabar, A., Remke, A. (2014). Applying Mean-Field Approximation to Continuous Time Markov Chains. In: Remke, A., Stoelinga, M. (eds) Stochastic Model Checking. Rigorous Dependability Analysis Using Model Checking Techniques for Stochastic Systems. ROCKS 2012. Lecture Notes in Computer Science, vol 8453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45489-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45489-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45488-6

  • Online ISBN: 978-3-662-45489-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics