Skip to main content

Efficient Fluorescence Microscopy Analysis over a Volunteer Grid/Cloud Infrastructure

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 485))

Abstract

This work presents a distributed computing algorithm over volunteer grid/cloud computing systems for Fluorescence Correlation Spectroscopy, a computational biology technique for obtaining quantitative information about the motion of molecules in living cells. High performance computing is needed to cope with large computing times when performing complex simulations, and volunteer grid/cloud computing emerges as a powerful paradigm to solve this kind of problems by coordinately using many computing resources distributed around the world. The proposed algorithm applies a domain decomposition technique for performing many simulations using different cell models at the same time. The experimental evaluation performed on a volunteer distributing computing infrastructure demonstrates that efficient execution times are obtained when using OurGrid middleware.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D.: BOINC: A system for public-resource computing and storage. In: 5th Int. Workshop on Grid Computing, Pittsburgh, USA, pp. 4–10 (2004)

    Google Scholar 

  2. Anderson, D., Fedak, G.: The computational and storage potential of volunteer computing. In: 6th Int. Symp. on Cluster Computing and the Grid, pp. 73–80 (2006)

    Google Scholar 

  3. Bartol, T., Land, B., Salpeter, E., Salpeter, M.: Monte carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J. 59(6), 1290–1307 (1991)

    Article  Google Scholar 

  4. Buyya, R., Broberg, J., Goscinski, A.M.: Cloud Computing Principles and Paradigms. Wiley Publishing (2011)

    Google Scholar 

  5. Cirne, W., Brasileiro, F., Andrade, N., Costa, L., Andrade, A., Novaes, R., Mowbray, M.: Labs of the world, unite! Journal of Grid Computing 4(3), 225–246 (2006)

    Article  MATH  Google Scholar 

  6. Dix, J., Hom, E., Verkman, A.: Fluorescence Correlation Spectroscopy Simulations of Photophysical Phenomena and Molecular Interactions: A Molecular Dynamics-Monte Carlo Approach. J. Phys. Chem. B 110(4), 1896–1906 (2006)

    Article  Google Scholar 

  7. Elson, E.L.: Fluorescence correlation spectroscopy: Past, present, future. Biophys J. 101(12), 2855–2870 (2011)

    Article  Google Scholar 

  8. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-Degree Compared. In: Grid Computing Environments Workshop, pp. 1–10 (2008)

    Google Scholar 

  9. Haustein, E., Schwille, P.: Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29(2), 153–166 (2003)

    Article  Google Scholar 

  10. Joseph, J., Fellenstein, C.: Grid Computing. Prentice Hall PTR, Upper Saddle River (2003)

    Google Scholar 

  11. Kerr, R., Bartol, T., Kaminsky, B., Dittrich, M., Chang, J., Baden, S., Sejnowski, T., Stiles, J.: Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM Journal on Scientific Computing 30(6), 3126–3149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lidke, D.S., Wilson, B.S.: Caught in the act: quantifying protein behaviour in living cells. Trends in Cell Biology 19(11), 566–574 (2009)

    Article  Google Scholar 

  13. Lippincott, J., Altan, N., Patterson, G.: Photobleaching and photoactivation: following protein dynamics in living cells. Nat. Cell Biol. Suppl. (2003)

    Google Scholar 

  14. Martínez, E., Marian, J., Kalos, M., Perlado, J.: Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems. J. Comp. Phys. 227(8), 3804–3823 (2008)

    Article  MATH  Google Scholar 

  15. Meriney, S., Dittrich, M.: Organization and function of transmitter release sites at the neuromuscular junction. The Journal of Physiology 591(13), 3159–3165 (2013)

    Google Scholar 

  16. Molnár Jr., F., Izsák, F., Mészáros, R., Lagzi, I.: Simulation of reaction-diffusion processes in three dimensions using CUDA. Chemometrics and Intelligent Laboratory Systems 108(1), 76–85 (2011)

    Article  Google Scholar 

  17. Nov, O., Anderson, D., Arazy, O.: Volunteer computing: A model of the factors determining contribution to community-based scientific research. In: 19th Int. Conf. on World Wide Web, pp. 741–750 (2010)

    Google Scholar 

  18. Stiles, J.R., Bartol, T.M.: Monte Carlo methods for simulating realistic synaptic microphysiology using MCell, ch. 4, pp. 87–127. CRC Press (2001)

    Google Scholar 

  19. Stiles, J.R., Van Helden, D., Bartol, T.M., Salpeter, E.E., Salpeter, M.M.: Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc. Natl. Acad. Sci. USA 93(12), 5747–5752 (1996)

    Article  Google Scholar 

  20. van Zon, J., ten Wolde, P.: Simulating biochemical networks at the particle level and in time and space: Green’s function reaction dynamics. Phys. Rev. Lett. 94(12), 128103 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Da Silva, M. et al. (2014). Efficient Fluorescence Microscopy Analysis over a Volunteer Grid/Cloud Infrastructure. In: Hernández, G., et al. High Performance Computing. CARLA 2014. Communications in Computer and Information Science, vol 485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45483-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45483-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45482-4

  • Online ISBN: 978-3-662-45483-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics