Skip to main content

Soluble Organocalcium Compounds for the Activation and Conversion of Carbon Dioxide and Heteroaromatic Substrates

  • Conference paper
  • First Online:
Fuels From Biomass: An Interdisciplinary Approach (BrenaRo 2011)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 129))

Included in the following conference series:

  • 992 Accesses

Abstract

The effective activation of (hetero)aromatic compounds is of particular interest for the production of tailor made compounds that can serve as key intermediates in the development of alternative combustion fuels. As a sustainable alternative for late transition metals, organocalcium complexes are studied in the context of activation of carbon dioxide and aromatic N- and O-heterocycles. Highly regioselective C–H bond activation and carbometalation reactions have been observed for conversions with pyridine derivatives. Rapid insertion of CO2 into calcium carbon bonds of the obtained products is observed. Furan derivatives are found more inert and the formation of polymeric products is described. Slow isomerization of 2,5-dihydrofuran (2,5-DHF) to 2,3-dihydrofuran (2,3-DHF) is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlögl, R.: The role of chemistry in the energy challenge. ChemSusChem 3, 209–222 (2010). doi:10.1002/cssc.200900183

  2. Schlögl, R.: Chemistry’s role in regenerative energy. Angew. Chem. Int. Ed. 50, 6424–6426 (2011). doi:10.1002/anie.201103415

  3. Kuster, B.F.M.: 5-Hydroxymethylfurfural (HMF). A Review Focussing on its ManufactureStarch – Stärke 42, 314–321 (1990). doi:10.1002/star.19900420808

  4. Zakrzewska, M.E., Bogel-Łukasik, E., Bogel-Łukasik, R.: Ionic liquid-mediated formation of 5-hydroxymethylfurfural—a promising biomass-derived building block. Chem. Rev. 111, 397–417 (2010). doi:10.1021/cr100171a

  5. Ståhlberg, T., Fu, W., Woodley, J.M., Riisager, A.: Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: paving the way to renewable chemicals. ChemSusChem 4, 451–458 (2011). doi:10.1002/cssc.201000374

  6. Geilen, F.M.A., vom Stein, T., Engendahl, B., Winterle, S., Liauw, M.A., Klankermayer, J., Leitner, W.: Highly selective decarbonylation of 5-(hydroxymethyl)furfural in the presence of compressed carbon dioxide. Angew. Chem. Int. Ed. 50, 6831–6834 (2011). doi:10.1002/anie.201007582

    Article  Google Scholar 

  7. Geilen, F.M.A., Engendahl, B., Harwardt, A., Marquardt, W., Klankermayer, J., Leitner, W.: Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew. Chem. Int. Ed. 49, 5510–5514 (2010). doi:10.1002/anie.201002060

  8. Nichols, J.M., Bishop, L.M., Bergman, R.G., Ellman, J.A.: Catalytic C–O bond cleavage of 2-Aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers. J. Am. Chem. Soc. 132, 12554–12555 (2010). doi:10.1021/ja106101f

  9. Peters, M., Köhler, B., Kuckshinrichs, W., Leitner, W., Markewitz, P., Müller, T.E.: Chemical technologies for exploiting and recycling carbon dioxide into the value chain. ChemSusChem 4:1216–1240 (2011). doi:10.1002/cssc.201000447

  10. Wang, W., Wang, S., Ma, X., Gong, J.: Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 3703–3727 (2011)

    Google Scholar 

  11. Himeda, Y., Miyazawa, S., Hirose, T.: Interconversion between formic acid and H2/CO2 using rhodium and ruthenium catalysts for CO2 fixation and H2 storage. ChemSusChem 4, 487–493 (2011). doi:10.1002/cssc.201000327

  12. Matson, T.D., Barta, K., Iretskii, A.V., Ford, P.C.: One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels. J. Am. Chem. Soc. 133, 14090–14097 (2011). doi:10.1021/ja205436c

  13. Wu, G.-P., Wei, S.-H., Ren, W.-M., Lu, X.-B., Xu, T.-Q., Darensbourg, D.J.: Perfectly alternating copolymerization of CO2 and epichlorohydrin using cobalt(III)-based catalyst systems. J. Am. Chem. Soc. 133, 15191–15199 (2011). doi:10.1021/ja206425j

  14. Wu, J., Hazari, N., Incarvito, C.D.: Synthesis, properties, and reactivity with carbon dioxide of (allyl)2ni(l) complexes. Organometallics 30, 3142–3150 (2011). doi:10.1021/om2002238

  15. Schaub, T., Paciello, R.A.: A process for the synthesis of formic acid by CO2 hydrogenation: thermodynamic aspects and the role of CO. Angew. Chem. Int. Ed. 50, 7278–7282 (2011). doi:10.1002/anie.201101292

  16. Yu, K.M.K., Curcic, I., Gabriel, J., Tsang, S.C.E.: Recent advances in CO2 capture and utilization. ChemSusChem 1, 893–899. doi:10.1002/cssc.200800169

  17. Cokoja, M., Bruckmeier, C., Rieger, B., Herrmann, W.A., Kühn, F.E.: Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? Angew. Chem. Int. Ed. 50, 8510–8537 (2011). doi:10.1002/anie.201102010

  18. Dibenedetto, A., Stufano, P., Nocito, F., Aresta, M.: Ru(II)-mediated hydrogen transfer from aqueous glycerol to CO2: from waste to value-added products. ChemSusChem 4, 1311–1315 (2011). doi:10.1002/cssc.201000434

  19. Harder, S.: From limestone to catalysis: application of calcium compounds as homogeneous catalysts. Chem. Rev. 110, 3852–3876 (2010). doi:10.1021/cr9003659

  20. Jochmann, P., Dols, T.S., Spaniol, T.P., Perrin, L., Maron, L., Okuda, J.: Bis(allyl)calcium. Angew. Chem. Int. Ed. 48, 5715–5719 (2009). doi:10.1002/anie.200901743

  21. Jochmann, P., Dols, T.S., Spaniol, T.P., Perrin, L., Maron, L., Okuda, J.: Insertion of pyridine into the calcium allyl bond: regioselective 1,4-dihydropyridine formation and C–H bond activation. Angew. Chem. Int. Ed. 49, 7795–7798. doi:10.1002/anie.201003704

  22. Jochmann, P., Leich, V., Spaniol, T.P., Okuda, J.: Calcium-mediated dearomatization, C–H bond activation, and allylation of alkylated and benzannulated pyridine derivatives. Chem.-Eur. J. 17, 12115–12122 (2011). doi:10.1002/chem.201101489

  23. Shannon, R.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crystallogr. Sect. A 32, 751–767 (1976). doi:10.1107/S0567739476001551

  24. Jochmann, P., Maslek, S., Spaniol, T.P., Okuda, J.: Allyl calcium compounds: synthesis and structure of bis(η3-1-alkenyl)calcium. Organometallics 30, 1991–1997 (2011). doi:10.1021/om200012k

  25. Jochmann, P., Spaniol, T.P., Chmely, S.C., Hanusa, T.P., Okuda, J.: Preparation, structure, and ether cleavage of a mixed hapticity allyl compound of calcium. Organometallics 30, 5291–5296 (2011). doi:10.1021/om200749f

  26. Barta, N.S., Cook, G.R., Landis, M.S., Stille, J.R.: Studies of the regiospecific 3-aza-Cope rearrangement promoted by electrophilic reagents. J. Org. Chem. 57, 7188–7194 (1992). doi:10.1021/jo00052a037

  27. Conroy, H., Firestone, R.A.: The intermediate dienone in the para-Claisen rearrangement. J. Am. Chem. Soc. 78, 2290–2297 (1956). doi:10.1021/ja01591a072

  28. Blechert, S.: The hetero-Cope rearrangement in organic synthesis. Synth. 1989. 71, 82 (1989). doi:10.1055/s-1989-27158

  29. Onodera, G., Imajima, H., Yamanashi, M., Nishibayashi, Y., Hidai, M., Uemura, S.: Ruthenium-catalyzed allylation of aromatic compounds and allylic ether formation. Organometallics 23, 5841–5848 (2004). doi:10.1021/om049358k

  30. Dieter, J.W., Li, Z., Nicholas, K.M.: Iron-mediated aromatic allylation. Tetrahedron Lett. 28, 5415–5418 (1987). doi:10.1016/s0040-4039(00)96742-x

  31. Bechem, B., Patman, R.L., Hashmi, A.S.K., Krische, M.J.: Enantioselective carbonyl allylation, crotylation, and tert-prenylation of furan methanols and furfurals via iridium-catalyzed transfer hydrogenation. J. Org. Chem. 75, 1795–1798 (2010). doi:10.1021/jo902697g

  32. Ratios estimated by 1H NMR and/or GC/MS analysis

    Google Scholar 

  33. Baird, M.S., Baxter, A.G.W., Hoorfar, A., Jefferies, I.: Ring-size and substituent effects in intramolecular reactions of alkylidenecarbenes (carbenoids). J. Chem. Soc. Perkin Trans. 1, 2575–2581 (1991)

    Google Scholar 

  34. Su, L., Lei, C.-Y., Fan, W.-Y., Liu, L.-X.: FeCl3-mediated reaction of alkynols with iodine: an efficient and convenient synthetic route to vinyl iodides. Synth. Commun. 41, 1200–1207. doi:10.1080/00397911.2010.481739

  35. Botteghi, C., Consiglio, G., Ceccarelli, G., Stefani, A.: Convenient synthetic approach to 3- and 4-alkyl-2,3-dihydrofurans. J. Org. Chem. 37, 1835–1837 (1972). doi:10.1021/jo00976a040

  36. Krompiec, S., Kuznik, N., Urbala, M., Rzepa, J.: Isomerization of alkyl allyl and allyl silyl ethers catalyzed by ruthenium complexes. J. Mol. Catal. A: Chem. 248, 198–209 (2006). doi:10.1016/j.molcata.2005.12.022

  37. Mazuela, J., Coll, M., Pàmies, O., Diéguez, M.: Rh-catalyzed asymmetric hydroformylation of heterocyclic olefins using chiral diphosphite ligands scope and limitations. J. Org. Chem. 74, 5440–5445 (2009). doi:10.1021/jo900958k

    Article  Google Scholar 

  38. Gual, A., Godard, C., Castillón, S., Claver, C.: Highly efficient rhodium catalysts for the asymmetric hydroformylation of vinyl and allyl ethers using C1-symmetrical diphosphite ligands. Adv. Synth. Catal. 352, 463–477 (2010). doi:10.1002/adsc.200900608

  39. Monnier, J.R., Moorehouse, C.S.: Vol. WO 962378 (A1) (Ed.: E. C. CO), USA (1996)

    Google Scholar 

  40. Junichi F.: Vol. WO 2009133950, C07B61/00; C07C41/32; C07C43/15; C07D307/28 ed. (Ed.: K. CO), Japan (2009)

    Google Scholar 

  41. Eliel, E.L., Nowak, B.E., Daignault, R.A., Badding, V.G.: Reductions with metal hydrides. XIV. Reduction of 2-Tetrahydropyranyl and 2-Tetrahydrofuranyl Ethers. J. Org. Chem. 30, 2441–2447 (1965). doi:10.1021/jo01018a082

  42. Hoveyda, A.H., Xu, Z., Morken, J.P., Houri, A.F.: Stereoselective zirconium-catalyzed ethylmagnesiation of homoallylic alcohols and ethers. The influence of internal Lewis bases on substrate reactivity. J. Am. Chem. Soc. 113, 8950–8952. doi:10.1021/ja00023a055

  43. Hoveyda, A.H., Morken, J.P., Houri, A.F., Xu, Z.: The mechanism of the zirconium-catalyzed carbomagnesiation reaction. Efficient and selective catalytic carbomagnesiation with higher alkyls of magnesium. J. Am. Chem. Soc. 114, 6692–6697 (1992). doi:10.1021/ja00043a012

  44. Hoveyda, AH., Xu, Z.: Stereoselective formation of carbon-carbon bonds through metal catalysis. The zirconium-catalyzed ethylmagnesiation reaction. J. Am. Chem. Soc. 113, 5079–5080. doi:10.1021/ja00013a064

  45. Morken, JP., Didiuk, MT., Hoveyda, AH: Zirconium-catalyzed asymmetric carbomagnesation. J. Am. Chem. Soc. 115, 6997–6998 (1993). doi:10.1021/ja00068a077

  46. Benn, R., Hoffmann, E.G.: 1H NMR study of the fluxional behaviour of tetraallylhafnium and cyclooctatetraenediallylzirconium. J. Org. Chem. 193, C33–C36 (1980). doi:10.1016/s0022-328x(00)85624-7

  47. Hoffmann, E.G., Kallweit, R., Schroth, G., Seevogel, K., Stempfle, W., Wilke, G.: IR- und 1H-NMR-spektroskopische untersuchungen an zirkon und hafniumallylen: IÜbergangsmetallallyle. J. Organomet. Chem. 97, 183–202 (1975). doi:10.1016/s0022-328x(00)89465-6

  48. Kablitz, H.-J., Wilke, G.: Übergangsmetallkomplexe: III. Über zirkonorganische komplexe mit cyclooctatetraen als ligand. J Organomet Chem 51, 241–271 (1973). doi:10.1016/s0022-328x(00)93522-8

  49. Mashima, K., Yasuda, H., Asami, K., Nakamura, A.: Structures of mono- and bis(2-butenyl) zirconium complexes in solution and threo selective insertion reaction of aliphatic aldehydes. Chem. Lett. 12, 219–222 (1983). doi:10.1246/cl.1983.219

  50. Osakada, K.: 1,4-hydrosilylation of pyridine by ruthenium catalyst: a new reaction and mechanism. Angew. Chem. Int. Ed. 50, 3845–3846 (2011). doi:10.1002/anie.201008199

  51. Gutsulyak, DV., van der Est, A., Nikonov, G.I.: Facile catalytic hydrosilylation of pyridines. Angew. Chem. Int. Ed. 50, 1384–1387 (2011). doi:10.1002/anie.201006135

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Okuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jochmann, P., Spaniol, T.P., Okuda, J. (2015). Soluble Organocalcium Compounds for the Activation and Conversion of Carbon Dioxide and Heteroaromatic Substrates. In: Klaas, M., Pischinger, S., Schröder, W. (eds) Fuels From Biomass: An Interdisciplinary Approach. BrenaRo 2011. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45425-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45425-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45424-4

  • Online ISBN: 978-3-662-45425-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics