Skip to main content

Planar, Stereoscopic, and Holographic PIV-Measurements of the In-Cylinder Flow of Combustion Engines

  • Conference paper
  • First Online:
Book cover Fuels From Biomass: An Interdisciplinary Approach (BrenaRo 2011)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 129))

Included in the following conference series:

Abstract

The experimental analysis of the highly unsteady three-dimensional flow in internal combustion (IC) engines requires measurement techniques that are able to capture the velocity field with high temporal and spatial resolution. Among other techniques, particle-image velocimetry (PIV) is used to measure the flow in combustion engines. Depending on the specific goal of a measurement series, either standard 2D-2C PIV, stereoscopic PIV (2D/3C) or fully three-dimensional PIV methods (3D/3C) can be used. In this study, the fundamentals of particle-image velocimetry (PIV) are explained in detail, with a special focus on the application of this measurement technique to internal combustion engines. As far as the generation of the particle images is concerned, this paper describes the special characteristics of seeding particles for use in IC engines including the generation process followed by a short introduction into different light sources and light-sheet generation methods. With regard to image acquisition and processing, digital imaging devices and image evaluation methods are described. Moreover, three component two dimensional and three dimensional PIV measurement techniques, namely stereoscopic-PIV and holographic-PIV, are concisely explained. Hereafter, two-component PIV measurements in several planes, three-component-PIV measurements in a set of planes and holographic-PIV measurements in the whole volume of the intake flow of a four valve piston engine at 160° crank angle are analyzed. The results of the stereoscopic PIV measurements show the highly three-dimensional propagation of the engine flow. Furthermore, the feasibility of holographic PIV for the analysis of engine flows is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arroyo, M.P., Greated, C.A.: Stereoscopic particle image velocimetry. Meas. Sci. Technol. 2, 1181–1186 (1991)

    Article  Google Scholar 

  2. Bücker, I., Karhoff, D., Dannemann, J., Pielhop, K., Klaas, M., Schröder, W.: Comparison of piv measured flow structures in two four-valve piston engines. In: Stab2010 (2010)

    Google Scholar 

  3. Born, M.: Optik. Springer, Berlin (1981)

    Google Scholar 

  4. Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, London (1999)

    Book  Google Scholar 

  5. Coudert, S., Schon, J.-P.: Back-projection algorithm with misalignment corrections for 2D3C stereoscopic PIV. Meas. Sci. Technol. 12, 1371–1381 (2001)

    Article  Google Scholar 

  6. Dannemann, J., Klaas, M., Schröder, W.: Three dimensional flow field within a four-valve combustion engine measured by particle-image velocimetry. In: ISDV 14 (2010)

    Google Scholar 

  7. Dannemann, J., Pielhop, K., Klaas, M., Schröder, W.: Cycle-resolved multi-planar particle-image velocimetry measurements of the in-cylinder flow of a four-valve combustion engine. In: 8th International Symposium on Particle Image Velocimetry—PIV 09 (2009)

    Google Scholar 

  8. Dannemann, J., Pielhop, K., Klaas, M., Schröder, W.: Cycle resolved multi-planar flow measurements in a four-valve combustion engine. Exp. Fluids 50, 961–976 (2010)

    Google Scholar 

  9. Eichler, J., Eichler, H.J.: Laser, Bauformen, Strahlführung. Springer, Anwendungen (1998)

    Google Scholar 

  10. Elsinga, G.E., van Oudheusden, B.W., Scarano, F.: Experimental assessment of tomographic-PIV accuracy. In: 13th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2006)

    Google Scholar 

  11. Estevadeordal, J., Goss, L.: PIV with LED: particle shadow velocimetry (PSV). In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, Meeting Papers (2005)

    Google Scholar 

  12. Gabor, D.: A new microscopic principle. Nature 161, 777–778 (1949)

    Article  Google Scholar 

  13. Gaydon, C., Raffel, M., Willert, C., Rosengarten, J., Kompenhans, J.: Hybrid stereoscopic particle image velocimetry. Exp. Fluids 23, 331–334 (1997)

    Article  Google Scholar 

  14. Graftieaux, L., Michard, M., Grosjean, N.: Combining PIV, POD and vortex identification algorithms for the study of turbulent swirling flows. Meas. Sci. Technol. 12, 1422–1429 (2001)

    Article  Google Scholar 

  15. Große, S., Schröder, W., Klaas, M., Klöckner, A., Roggenkamp, J.: Time resolved analysis of steady and oscillating flow in the upper human airways. Exp. Fluids 42, 955–970 (2007)

    Article  Google Scholar 

  16. Grout, I.A.: Integrated Circuit Test Engineering. Springer, London (2006)

    Google Scholar 

  17. Guibert, P., Murat, M., Hauet, B., Keribin, P.: Particle image velocimetry measurements: application to in-cylinder flow for a two stroke engine. SAE Paper 932647 (1993)

    Google Scholar 

  18. Heflinger, L.O., Stewart, G.L., Booth, C.R.: Holographic motion pictures of microscopic plankton. Appl. Opt. 17, 951–954 (1978)

    Article  Google Scholar 

  19. Herrmann, S.F.: Three-dimensional optical flow measurements with short coherence holography. Ph.D thesis, Carl von Ossietzky Universität Oldenburg, July 2006

    Google Scholar 

  20. Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988)

    Google Scholar 

  21. Huang, R.F., Huang, C.W., Chang, S.B., Yang, H.S., Lin, T.W., Hsu, W.Y.: Topological flow evolutions in cylinder of a motored engine during intake and compression strokes. J. Fluids Struct. 20, 105–107 (2005)

    Article  Google Scholar 

  22. Janesick, J.R.: Scientific charge-coupled devices. In: SPIE—The International Society for Optical Engineering (2001)

    Google Scholar 

  23. Konrath, R.: Strömungsanalyse im Zylinder eines 4-Ventil-Motors mit der holographischen Particle-Image Velocimetry. Ph.D thesis, Rheinisch Westfälische Technische Hochschule Aachen (2003)

    Google Scholar 

  24. Konrath, R., Schröder, W., Limberg, W.: Holographic particle image velocimetry applied to the flow within the cylinder of a four-valve internal combustion engine. Exp. Fluids 33, 781–793 (2002)

    Article  Google Scholar 

  25. Kreis, T.: Handbook of Holographic Interferometry. Wiley, Weinheim (2005)

    Google Scholar 

  26. Leith, E.N., Upatnieks, J.: Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123–1130 (1962)

    Article  Google Scholar 

  27. Li, Y., Zhao, H., Peng, Z., Ladommatos, N.: Particle image velocimetry measurements of in-cylinder flow in internal combustion engines—experiment and flow structure analysis. Proc. Institut. Mech. Eng. 216(Part D), 65–81 (2002)

    Google Scholar 

  28. Milonni, P.W., Eberly, J.H.: Lasers. Wiley, New York (1988)

    Google Scholar 

  29. Prasad, A.K., Adrian, R.: Stereoscopic particle image velocimetry applied to liquid flows. Exp. Fluids 15, 49–60 (1993)

    Article  Google Scholar 

  30. Prasad, A.K., Jensen, K.: Scheimpflug stereocamera for particle image velocimetry in liquid flows. Appl. Opt. 34, 7092–7099 (1995)

    Article  Google Scholar 

  31. Pu, Y., Meng, H.: An advanced off-axis holographic particle image velocimetry (HPIV) system. Exp. Fluids 29, 184–197 (2000)

    Article  Google Scholar 

  32. Raffel, M., Willert, C.E., Wereley, St.T., Kompenhans, J.: Particle Image Velocimetry. Springer, Berlin (2007)

    Google Scholar 

  33. Reuss, D.L., Rosalik, M.: PIV measurements during combustion in a reciprocating internal combustion engine. SAE Technical Paper (1998)

    Google Scholar 

  34. Ruck, B.: Einfluß der Tracerteilchengröße auf die Signalinformation in der Laser-Doppler-Anemometry. Technisches Messen - tm 57, 284–295 (1990)

    Article  Google Scholar 

  35. Schröder, F., Klaas, M., Schröder, W.: Multiplane-stereo piv measurements for steady flow in the first two bifurcations of the upper human airways during exhalation. In: Proceedings of the ECCOMAS Thematic International Conference on 043 Simulation and Modeling of Biological Flows (SIMBIO 2011) (2011)

    Google Scholar 

  36. Siegmann, A.E.: Lasers. University Science Books, Sausalito (1986)

    Google Scholar 

  37. Soloff, S.M., Adrian, R., Liu, Z.-C.: Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Technol. 8, 1441–1454 (1997)

    Article  Google Scholar 

  38. Soodt, T., Schröder, F., Klaas, M., Schröder, W., van Overbrüggen, T.: Experimental investigation into the transitional bronchial velocity distribution using stereoscanning PIV. Exp. Fluids 52(3), 709–718 (2011)

    Google Scholar 

  39. Stansfield, P., Wigley, G., Justham, T., Catto, J., Pitcher, G.: PIV analysis of in-cylinder flow stuctures over a range of realistic engine speeds. Exp. Fluids 43, 135–146 (2007)

    Article  Google Scholar 

  40. Svelto, O.: Principles of Lasers. Springer, New York (2009)

    Google Scholar 

  41. Tennekes, H., Lumley, J.L.: A First Course in Turbulence. MIT Press, Cambridge (1972)

    Google Scholar 

  42. Thyagarajan, K., Ghatak, A.: Lasers: Fundamentals and Applications. Springer, Boston (2010)

    Google Scholar 

  43. van de Hulst, H.C.: Light Scattering by Small Particles. Wiley, New York (1957)

    Google Scholar 

  44. van Doorne, C.W.H., Westerweel, J.: Measurement of laminar, transitional and turbulent pipe flow using Stereoscopic-PIV. Exp. Fluids 42, 259–279 (2007)

    Article  Google Scholar 

  45. Westerweel, J.: Efficient detection of spurious vectors in particle image velocimetry data. Exp. Fluids 16, 236–247 (1993)

    Google Scholar 

  46. Westerweel, J.: Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 8, 1379–1392 (1997)

    Article  Google Scholar 

  47. Willert, C., Stasicki, B., Moessner, S., Klinner, J.: Pulsed operation of high power light emitting diodes for flow diagnostics. Technical Report, Institute of Propulsion Technology, German Aerospace Center (DLR) (2010)

    Google Scholar 

Download references

Acknowledgments

This research is part of the the Cluster of Excellence “‘Tailor-Made Fuels from Biomass”’, the NRW Forschungsschule “‘Brennstoffgewinnung aus nachwachsenden Rohstoffen (BrenaRo)”’ and the collaborative research center SFB686 which is funded by the German Research Association (Deutsche Forschungsgemeinschaft, DFG). The support of the DFG is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. van Overbrüggen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Overbrüggen, T., Bücker, I., Dannemann, J., Karhoff, DC., Klaas, M., Schröder, W. (2015). Planar, Stereoscopic, and Holographic PIV-Measurements of the In-Cylinder Flow of Combustion Engines. In: Klaas, M., Pischinger, S., Schröder, W. (eds) Fuels From Biomass: An Interdisciplinary Approach. BrenaRo 2011. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45425-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45425-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45424-4

  • Online ISBN: 978-3-662-45425-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics