Skip to main content

Salivary Gland Tissue Engineering and Future Diagnostics

  • Chapter
  • First Online:

Abstract

Our study of salivary gland structure and function relies on our ability to study the organ in its native environment. To scale those needs to a laboratory setting, researchers have created in vitro models that replicate the salient features of the gland, but these are inevitably tied to the abilities of current technologies and may require some compromises along the way. In this chapter, we discuss key features of the gland that would be desired in a model and the potential intersection of those needs with advances in the field of tissue engineering. The application of these new technologies, along with improvements in imaging and phenotype reporting, holds the promise of significantly impacting salivary diagnostics through continual improvements in the accuracy and scalability of laboratory models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee YH, Wong DT. Saliva: an emerging biofluid for early detection of diseases. Am J Dent. 2009;22(4):241–8 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    PubMed Central  PubMed  Google Scholar 

  2. Greabu M, Battino M, Mohora M, Totan A, Didilescu A, Spinu T, et al. Saliva: a diagnostic window to the body, both in health and in disease. J Med Life. 2009;2(2):124–32 [Review].

    PubMed Central  PubMed  Google Scholar 

  3. Blencowe T, Pehrsson A, Lillsunde P, Vimpari K, Houwing S, Smink B, et al. An analytical evaluation of eight on-site oral fluid drug screening devices using laboratory confirmation results from oral fluid. Forensic Sci Int. 2011;208(1–3):173–9 [Comparative Study Evaluation Studies Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  4. Atkinson JC, Baum BJ. Salivary enhancement: current status and future therapies. J Dent Educ. 2001;65(10):1096–101.

    PubMed  Google Scholar 

  5. Pradhan S, Liu C, Zhang C, Jia X, Farach-Carson MC, Witt RL. Lumen formation in three-dimensional cultures of salivary acinar cells. Otolaryngol Head Neck Surg. 2010;142(2):191–5.

    PubMed  Google Scholar 

  6. Pradhan S, Zhang C, Jia X, Carson DD, Witt R, Farach-Carson MC. Perlecan domain iv peptide stimulates salivary gland cell assembly in vitro. Tissue Eng Part A. 2009;15(11):3309–20 [Research Support, N.I.H., Extramural].

    PubMed Central  PubMed  Google Scholar 

  7. Pradhan-Bhatt S, Harrington DA, Duncan RL, Farach-Carson MC, Jia X, Witt RL. A novel in vivo model for evaluating functional restoration of a tissue-engineered salivary gland. Laryngoscope. 2014;124(2):456–61.

    PubMed  Google Scholar 

  8. Pradhan-Bhatt S, Harrington DA, Duncan RL, Jia X, Witt RL, Farach-Carson MC. Implantable three-dimensional salivary spheroid assemblies demonstrate fluid and protein secretory responses to neurotransmitters. Tissue Eng Part A. 2013;19(13–14):1610–20 [Research Support, N.I.H., Extramural].

    PubMed Central  PubMed  Google Scholar 

  9. Feng J, van der Zwaag M, Stokman MA, van Os R, Coppes RP. Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiother Oncol. 2009;92(3):466–71 [Comparative Study].

    PubMed  Google Scholar 

  10. Tucker AS. Salivary gland development. Semin Cell Dev Biol. 2007;18(2):237–44 [Research Support, Non-U.S. Gov’t Review].

    PubMed  Google Scholar 

  11. Patel VN, Hoffman MP. Salivary gland development: a template for regeneration. Semin Cell Dev Biol. 2014;25–26:52–60.

    PubMed  Google Scholar 

  12. Knosp WM, Knox SM, Hoffman MP. Salivary gland organogenesis. Wiley Interdiscip Rev Dev Biol. 2012;1(1):69–82.

    PubMed  Google Scholar 

  13. Ferreira JN, Hoffman MP. Interactions between developing nerves and salivary glands. Organogenesis. 2013;9(3):199–205 [Research Support, N.I.H., Intramural].

    PubMed Central  PubMed  Google Scholar 

  14. Witt RL. Salivary gland diseases: surgical and medical management. New York: Thieme; 2005.

    Google Scholar 

  15. Knox SM, Lombaert IMA, Reed X, Vitale-Cross L, Gutkind JS, Hoffman MP. Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. Science. 2010;329(5999):1645–7.

    PubMed Central  PubMed  Google Scholar 

  16. Iden S, Collard JG. Crosstalk between small gtpases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol. 2008;9(11):846–59.

    PubMed  Google Scholar 

  17. LeBleu VS, MacDonald B, Kalluri R. Structure and function of basement membranes. Exp Biol Med. 2007;232(9):1121–9.

    Google Scholar 

  18. Kadoya Y, Yamashina S. Salivary gland morphogenesis and basement membranes. Anato Sci Int. 2005;80(2):71–9.

    Google Scholar 

  19. O’Brien LE, Jou T-S, Pollack AL, Zhang Q, Hansen SH, Yurchenco P, et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat Cell Biol. 2001;3(9):831–8.

    PubMed  Google Scholar 

  20. Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol. 2014;34:64–79.

    PubMed  Google Scholar 

  21. Hopf M, Göhring W, Kohfeldt E, Yamada Y, Timpl R. Recombinant domain iv of perlecan binds to nidogens, laminin–nidogen complex, fibronectin, fibulin-2 and heparin. Eur J Biochem. 1999;259(3):917–26.

    PubMed  Google Scholar 

  22. Baker OJ. Tight junctions in salivary epithelium. J Biomed Biotechnol. 2010;2010:13.

    Google Scholar 

  23. Shin K, Fogg VC, Margolis B. Tight junctions and cell polarity. Annu Rev Cell Dev Biol. 2006;22(1):207–35.

    PubMed  Google Scholar 

  24. Melvin JE, Yule D, Shuttleworth T, Begenisich T. Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol. 2005;67(1):445–69.

    PubMed  Google Scholar 

  25. Yamada S, Nelson WJ. Localized zones of rho and rac activities drive initiation and expansion of epithelial cell–cell adhesion. J Cell Biol. 2007;178(3):517–27.

    PubMed Central  PubMed  Google Scholar 

  26. Goldstein B, Macara IG. The par proteins: fundamental players in animal cell polarization. Dev Cell. 2007;13(5):609–22.

    PubMed Central  PubMed  Google Scholar 

  27. Yu W, Datta A, Leroy P, O’Brien LE, Mak G, Jou T-S, et al. Β1-integrin orients epithelial polarity via rac1 and laminin. Mol Biol Cell. 2005;16(2):433–45.

    PubMed Central  PubMed  Google Scholar 

  28. Bornens M. Organelle positioning and cell polarity. Nat Rev Mol Cell Biol. 2008;9(11):874–86.

    PubMed  Google Scholar 

  29. Masuda-Hirata M, Suzuki A, Amano Y, Yamashita K, Ide M, Yamanaka T, et al. Intracellular polarity protein par-1 regulates extracellular laminin assembly by regulating the dystroglycan complex. Genes Cells. 2009;14(7):835–50.

    PubMed  Google Scholar 

  30. Yamashita K, Suzuki A, Satoh Y, Ide M, Amano Y, Masuda-Hirata M, et al. The 8th and 9th tandem spectrin-like repeats of utrophin cooperatively form a functional unit to interact with polarity-regulating kinase par-1b. Biochem Biophys Res Commun. 2010;391(1):812–7.

    PubMed  Google Scholar 

  31. Daley WP, Gervais EM, Centanni SW, Gulfo KM, Nelson DA, Larsen M. Rock1-directed basement membrane positioning coordinates epithelial tissue polarity. Development. 2012;139(2):411–22.

    PubMed Central  PubMed  Google Scholar 

  32. Wells CD, Fawcett JP, Traweger A, Yamanaka Y, Goudreault M, Elder K, et al. A rich1/amot complex regulates the cdc42 gtpase and apical-polarity proteins in epithelial cells. Cell. 2006;125(3):535–48.

    PubMed  Google Scholar 

  33. Katsumata O, Sato Y-I, Sakai Y, Yamashina S. Intercalated duct cells in the rat parotid gland may behave as tissue stem cells. Anato Sci Int. 2009;84(3):148–54.

    Google Scholar 

  34. Kimoto M, Yura Y, Kishino M, Toyosawa S, Ogawa Y. Label-retaining cells in the rat submandibular gland. J Histochem Cytochem. 2008;56(1):15–24.

    PubMed Central  PubMed  Google Scholar 

  35. Cotroneo E, Proctor GB, Carpenter GH. Regeneration of acinar cells following ligation of rat submandibular gland retraces the embryonic-perinatal pathway of cytodifferentiation. Differentiation. 2010;79(2):120–30.

    PubMed Central  PubMed  Google Scholar 

  36. Lombaert IM, Hoffman MP. Epithelial stem/progenitor cells in the embryonic mouse submandibular gland. Front Oral Biol. 2010;14:90–106 [Review].

    PubMed Central  PubMed  Google Scholar 

  37. Patel VN, Rebustini IT, Hoffman MP. Salivary gland branching morphogenesis. Differentiation. 2006;74(7):349–64.

    PubMed  Google Scholar 

  38. Borghese E. The development in vitro of the submandibular and sublingual glands of mus musculus. J Anat. 1950;84(3):287–302, 283.

    PubMed Central  PubMed  Google Scholar 

  39. Borghese E. Explanation experiments on the influence of the connective tissue capsule on the development of the epithelial part of the submandibular gland of mus musculus. J Anat. 1950;84(3):303–18, 303.

    PubMed Central  PubMed  Google Scholar 

  40. Menko AS, Zhang L, Schiano F, Kreidberg JA, Kukuruzinska MA. Regulation of cadherin junctions during mouse submandibular gland development. Dev Dyn. 2002;224(3):321–33.

    PubMed  Google Scholar 

  41. Proctor GB, Carpenter GH. Regulation of salivary gland function by autonomic nerves. Auton Neurosci. 2007;133(1):3–18.

    PubMed  Google Scholar 

  42. Turner RJ, Sugiya H. Understanding salivary fluid and protein secretion. Oral Dis. 2002;8(1):3–11 [Research Support, Non-U.S. Gov’t Review].

    PubMed  Google Scholar 

  43. Rossi J, Luukko K, Poteryaev D, Laurikainen A, Sun YF, Laakso T, et al. Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking gfrα2, a functional neurturin receptor. Neuron. 1999;22(2):243–52.

    PubMed  Google Scholar 

  44. Heuckeroth RO, Enomoto H, Grider JR, Golden JP, Hanke JA, Jackman A, et al. Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron. 1999;22(2):253–63.

    PubMed  Google Scholar 

  45. Glebova NO, Ginty DD. Heterogeneous requirement of ngf for sympathetic target innervation in vivo. J Neurosci. 2004;24(3):743–51.

    PubMed  Google Scholar 

  46. Garrett JR, Kidd A. The innervation of salivary glands as revealed by morphological methods. Microsc Res Tech. 1993;26(1):75–91.

    PubMed  Google Scholar 

  47. Danielsson A, Hellstrom S, Henriksson R, Sundstrom S. Non-specific secretory supersensitivity in rat parotid gland following neonatal sympathetic denervation. Neurosci Lett. 1988;90(3):328–32.

    PubMed  Google Scholar 

  48. Henriksson R, Carlsöö B, Danielsson A, Sundström S, Jönsson G. Developmental influences of the sympathetic nervous system on rat parotid gland. J Neurol Sci. 1985;71(2–3):183–91.

    PubMed  Google Scholar 

  49. Proctor GB, Asking B. A comparison between changes in rat parotid protein composition 1 and 12 weeks following surgical sympathectomy. Exp Physiol. 1989;74(6):835–40.

    Google Scholar 

  50. Ekström J, Khosravani N, Castagnola M, Messana I. Saliva and the control of its secretion. In: Ekberg O, editor. Dysphagia. Berlin: Springer; 2012. p. 19–47.

    Google Scholar 

  51. Larrivée B, Freitas C, Suchting S, Brunet I, Eichmann A. Guidance of vascular development: lessons from the nervous system. Circ Res. 2009;104(4):428–41.

    PubMed  Google Scholar 

  52. Gray H. Gray’s anatomy: The unabridged running press edition of the american classic. In: Pick TP, Howden R, editors. Running Press, Philadelphia; 1974.

    Google Scholar 

  53. Modin A, Weitzberg E, Lundberg JM. Nitric oxide regulates peptide release from parasympathetic nerves and vascular reactivity to vasoactive intestinal polypeptide in vivo. Eur J Pharmacol. 1994;261(1–2):185–97.

    PubMed  Google Scholar 

  54. Wang Y, Sudilovsky D, Cao M, Chen WG, Goetz L, Xue H, et al. Establishing efficient xenograft models of models of low-grade human prostate cancer. Eur Urol Suppl. 2003;2(6):30.

    Google Scholar 

  55. Parmar H, Melov S, Samper E, Ljung B-M, Cunha GR, Benz CC. Hyperplasia, reduced e-cadherin expression, and developmental arrest in mammary glands oxidatively stressed by loss of mitochondrial superoxide dismutase. Breast. 2005;14(4):256–63.

    PubMed  Google Scholar 

  56. Wang Y, Xue H, Cutz J-C, Bayani J, Mawji NR, Chen WG, et al. An orthotopic metastatic prostate cancer model in scid mice via grafting of transplantable human prostate tumor line. Lab Invest. 2005;85(11):1392–404.

    PubMed  Google Scholar 

  57. Cunha GR. Mesenchymal-epithelial interactions: past, present, and future. Differentiation. 2008;76(6):578–86 [Research Support, N.I.H., Extramural Review].

    PubMed  Google Scholar 

  58. Grobstein C. Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature. 1953;172(4384):869–70.

    PubMed  Google Scholar 

  59. Grobstein C. Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science. 1953;118(3054):52–5.

    PubMed  Google Scholar 

  60. Kratochwil K. Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland of the mouse. Dev Biol. 1969;20(1):46–71.

    PubMed  Google Scholar 

  61. Ekblom P, Lehtonen E, Saxen L, Timpl R. Shift in collagen type as an early response to induction of the metanephric mesenchyme. J Cell Biol. 1981;89(2):276–83.

    PubMed  Google Scholar 

  62. Hoffman MP, Kidder BL, Steinberg ZL, Lakhani S, Ho S, Kleinman HK, et al. Gene expression profiles of mouse submandibular gland development: Fgfr1 regulates branching morphogenesis in vitro through bmp- and fgf-dependent mechanisms. Development. 2002;129(24):5767–78 [Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  63. Larsen M, Hoffman MP, Sakai T, Neibaur JC, Mitchell JM, Yamada KM. Role of pi 3-kinase and pip3 in submandibular gland branching morphogenesis. Dev Biol. 2003;255(1):178–91 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed Central  PubMed  Google Scholar 

  64. Sakai T, Larsen M, Yamada KM. Fibronectin requirement in branching morphogenesis. Nature. 2003;423(6942):876–81 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  65. Knox SM, Lombaert IMA, Haddox CL, Abrams SR, Cotrim A, Wilson AJ, et al. Parasympathetic stimulation improves epithelial organ regeneration. Nat Commun. 2013;4:1494. doi:10.1038/ncomms2493.

    PubMed Central  PubMed  Google Scholar 

  66. Maria OM, Maria O, Liu Y, Komarova SV, Tran SD. Matrigel improves functional properties of human submandibular salivary gland cell line. Int J Biochem Cell Biol. 2011;43(4):622–31 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  67. Ogawa Y. Immunocytochemistry of myoepithelial cells in the salivary glands. Prog Histochem Cytochem. 2003;38(4):343–426 [Review].

    PubMed  Google Scholar 

  68. Nelson CM, Bissell MJ. Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin Cancer Biol. 2005;15:342–52.

    PubMed Central  PubMed  Google Scholar 

  69. Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 2007;4:359–65.

    PubMed Central  PubMed  Google Scholar 

  70. Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development. 1989;105:223–35.

    PubMed Central  PubMed  Google Scholar 

  71. Sakakura T, Nishizuka Y, Dawe CJ. Mesenchyme-dependent morphogenesis and epithelium-specific cytodifferentiation in mouse mammary gland. Science. 1976;194(4272):1439–41.

    PubMed  Google Scholar 

  72. Lakhani S, Bissell M. Introduction: the role of myoepithelial cells in integration of form and function in the mammary gland. J Mammary Gland Biol Neoplasia. 2005;10(3):197–8 [Editorial].

    PubMed  Google Scholar 

  73. Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci. 2002;115(Pt 1):39–50 [Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    PubMed Central  PubMed  Google Scholar 

  74. Gudjonsson T, Adriance MC, Sternlicht MD, Petersen OW, Bissell MJ. Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia. J Mammary Gland Biol Neoplasia. 2005;10(3):261–72 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review].

    PubMed Central  PubMed  Google Scholar 

  75. Adriance MC, Inman JL, Petersen OW, Bissell MJ. Myoepithelial cells: good fences make good neighbors. Breast Cancer Res. 2005;7(5):190–7 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    PubMed Central  PubMed  Google Scholar 

  76. Vidi P-A, Bissell MJ, Lelièvre SA. Three-dimensional culture of human breast epithelial cells: the how and the why. Methods Mol Biol (Clifton, NJ). 2013;945:193–219.

    Google Scholar 

  77. Ampuja M, Jokimäki R, Juuti-Uusitalo K, Rodriguez-Martinez A, Alarmo E-L, Kallioniemi A. Bmp4 inhibits the proliferation of breast cancer cells and induces an mmp-dependent migratory phenotype in mda-mb-231 cells in 3d environment. BMC Cancer. 2013;13:429.

    PubMed Central  PubMed  Google Scholar 

  78. Miroshnikova YA, Jorgens DM, Spirio L, Auer M, Sarang-Sieminski AL, Weaver VM. Engineering strategies to recapitulate epithelial morphogenesis within synthetic three-dimensional extracellular matrix with tunable mechanical properties. Phys Biol. 2011;8(2):026013.

    PubMed Central  PubMed  Google Scholar 

  79. Nelson J, Manzella K, Baker OJ. Current cell models for bioengineering a salivary gland: a mini-review of emerging technologies. Oral Dis. 2013;19(3):236–44 [Research Support, N.I.H., Extramural].

    PubMed Central  PubMed  Google Scholar 

  80. Quissell DO, Barzen KA, Gruenert DC, Redman RS, Camden JM, Turner JT. Development and characterization of sv40 immortalized rat submandibular acinar cell lines. In Vitro Cell Dev Biol Anim. 1997;33(3):164–73 [Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  81. Liu XB, Sun X, Mork AC, Dodds MW, Martinez JR, Zhang GH. Characterization of the calcium signaling system in the submandibular cell line smg-c6. Proc Soc Exp Biol Med Soc Exp Biol Med. 2000;225(3):211–20 [Research Support, U.S. Gov’t, P.H.S.].

    Google Scholar 

  82. Liu X, Mork AC, Sun X, Castro R, Martinez JR, Zhang GH. Regulation of ca(2+) signals in a parotid cell line par-c5. Arch Oral Biol. 2001;46(12):1141–9 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  83. Quissell DO, Turner JT, Redman RS. Development and characterization of immortalized rat parotid and submandibular acinar cell lines. Eur J Morphol. 1998;36(Suppl):50–4.

    PubMed  Google Scholar 

  84. Turner JT, Redman RS, Camden JM, Landon LA, Quissell DO. A rat parotid gland cell line, par-c10, exhibits neurotransmitter-regulated transepithelial anion secretion. Am J Physiol. 1998;275(2 Pt 1):C367–74 [Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  85. Quissell DO, Barzen KA, Redman RS, Camden JM, Turner JT. Development and characterization of sv40 immortalized rat parotid acinar cell lines. In Vitro Cell Dev Biol Anim. 1998;34(1):58–67 [Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  86. Baker OJ, Schulz DJ, Camden JM, Liao Z, Peterson TS, Seye CI, et al. Rat parotid gland cell differentiation in three-dimensional culture. Tissue Eng Part C Methods. 2010;16(5):1135–44 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed Central  PubMed  Google Scholar 

  87. Szlávik V, Szabo B, Vicsek T, et al. Differentiation of primary submandibular gland cells cultured on basement membrane extract. Tissue Eng. 2008;14:1915–26.

    Google Scholar 

  88. Joraku A, Sullivan CA, Yoo J, Atala A. In-vitro reconstitution of three-dimensional human salivary gland tissue structures. Differentiation. 2007;75(4):318–24.

    PubMed  Google Scholar 

  89. Lombaert IM, Knox SM, Hoffman MP. Salivary gland progenitor cell biology provides a rationale for therapeutic salivary gland regeneration. Oral Dis. 2011;17(5):445–9 [Review].

    PubMed Central  PubMed  Google Scholar 

  90. Lombaert IMA, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, et al. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS ONE. 2008;3(4):e2063.

    PubMed Central  PubMed  Google Scholar 

  91. Nanduri LS, Maimets M, Pringle SA, van der Zwaag M, van Os RP, Coppes RP. Regeneration of irradiated salivary glands with stem cell marker expressing cells. Radiotherand Oncol. 2011;99(3):367–72 [Research Support, Non-U.S. Gov’t].

    Google Scholar 

  92. Kishi T, Takao T, Fujita K, Taniguchi H. Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands. Biochem Biophys Res Commun. 2006;340(2):544–52 [Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  93. Melchiorri AJ, Nguyen BN, Fisher JP. Mesenchymal stem cells: roles and relationships in vascularization. Tissue Eng Part B Rev. 2014;20:218–28.

    PubMed  Google Scholar 

  94. Koyama S, Sato E, Tsukadaira A, Haniuda M, Numanami H, Kurai M, et al. Vascular endothelial growth factor mrna and protein expression in airway epithelial cell lines in vitro. Eur Respir J. 2002;20(6):1449–56.

    PubMed  Google Scholar 

  95. Wernike E, Montjovent MO, Liu Y, Wismeijer D, Hunziker EB, Siebenrock KA, et al. Vegf incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo. Eur Cell Mater. 2010;19:30–40 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  96. De la Riva B, Nowak C, Sanchez E, Hernandez A, Schulz-Siegmund M, Pec MK, et al. Vegf-controlled release within a bone defect from alginate/chitosan/pla-h scaffolds. Eur J Pharm Biopharm. 2009;73(1):50–8 [Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  97. Bhang SH, Cho SW, La WG, Lee TJ, Yang HS, Sun AY, et al. Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials. 2011;32(11):2734–47 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  98. Lee MG, Ohana E, Park HW, Yang D, Muallem S. Molecular mechanism of pancreatic and salivary gland fluid and hco3 secretion. Physiol Rev. 2012;92(1):39–74 [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t Review].

    PubMed Central  PubMed  Google Scholar 

  99. He H, Yao Y, Wang Y, Wu Y, Yang Y, Gong P. A novel bionic design of dental implant for promoting its long-term success using nerve growth factor (ngf): utilizing nano-springs to construct a stress-cushioning structure inside the implant. Med Sci Monit. 2012;18(8):HY42–6.

    PubMed Central  PubMed  Google Scholar 

  100. Ai J-Y, Smith B, Wong DT. Bioinformatics advances in saliva diagnostics. In J Oral Sci. 2012;4(2):85–7.

    Google Scholar 

  101. Dawson LJ, Christmas SE, Smith PM. An investigation of interactions between the immune system and stimulus–secretion coupling in mouse submandibular acinar cells. A possible mechanism to account for reduced salivary flow rates associated with the onset of sjögren’s syndrome. Rheumatology. 2000;39(11):1226–33.

    PubMed  Google Scholar 

  102. Mason GI, Hamburger J, Bowman S, Matthews JB. Salivary gland expression of transforming growth factor β isoforms in Sjogren’s syndrome and benign lymphoepithelial lesions. Mol Pathol. 2003;56(1):52–9.

    PubMed Central  PubMed  Google Scholar 

  103. Nagler RM, Baum BJ. Prophylactic treatment reduces the severity of xerostomia following radiation therapy for oral cavity cancer. Arch Otolaryngol–Head Neck Surg. 2003;129(2):247–50.

    PubMed  Google Scholar 

  104. Sullivan CA, Haddad RI, Tishler RB, Mahadevan A, Krane JF. Chemoradiation-induced cell loss in human submandibular glands. Laryngoscope. 2005;115(6):958–64.

    PubMed  Google Scholar 

  105. Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med. 2012;4(160):160rv112 [Review].

    Google Scholar 

  106. Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng. 2011;2:403–30 [Historical Article].

    PubMed  Google Scholar 

  107. Griffith LG, Naughton G. Tissue engineering—current challenges and expanding opportunities. Science (New York, NY). 2002;295(5557):1009–14 [Review].

    Google Scholar 

  108. Langer R, Vacanti JP. Tissue engineering. Science (New York, NY). 1993;260(5110):920–6 [Review].

    Google Scholar 

  109. Vacanti CA. The history of tissue engineering. J Cell Mol Med. 2006;10(3):569–76 [Historical Article].

    PubMed  Google Scholar 

  110. Soscia DA, Sequeira SJ, Schramm RA, Jayarathanam K, Cantara SI, Larsen M, et al. Salivary gland cell differentiation and organization on micropatterned plga nanofiber craters. Biomaterials. 2013;34(28):6773–84 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.].

    PubMed Central  PubMed  Google Scholar 

  111. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    PubMed  Google Scholar 

  112. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001;294(5547):1708–12.

    PubMed  Google Scholar 

  113. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–54 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  114. Hoffman BD, Grashoff C, Schwartz MA. Dynamic molecular processes mediate cellular mechanotransduction. Nature. 2011;475(7356):316–23 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    PubMed  Google Scholar 

  115. Plotnikov SV, Pasapera AM, Sabass B, Waterman CM. Force fluctuations within focal adhesions mediate ecm-rigidity sensing to guide directed cell migration. Cell. 2012;151(7):1513–27 [Research Support, N.I.H., Intramural].

    PubMed  Google Scholar 

  116. Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PCDP, Pinter J, et al. Nuclear lamin-a scales with tissue stiffness and enhances matrix-directed differentiation. Science (New York, NY). 2013;341(6149):1240104.

    Google Scholar 

  117. Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang H-Y, Speicher DW, et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci. 2008;121(Pt 22):3794–802.

    PubMed Central  PubMed  Google Scholar 

  118. Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE. Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci U S A. 2007;104(40):15619–24.

    PubMed Central  PubMed  Google Scholar 

  119. Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984;309(5963):30–3 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  120. Ruoslahti E. Rgd and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697–715 [Research Support, U.S. Gov’t, P.H.S. Review].

    PubMed  Google Scholar 

  121. Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type i collagen generating the specific 3/4- and 1/4-length fragments. J Biol Chem. 1995;270(11):5872–6 [Comparative Study].

    PubMed  Google Scholar 

  122. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A. 2003;100(9):5413–8.

    PubMed Central  PubMed  Google Scholar 

  123. Lin C-C, Anseth KS. Cell-cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing beta-cell function. Proc Natl Acad Sci U S A. 2011;108(16):6380–5.

    PubMed Central  PubMed  Google Scholar 

  124. Dhimolea E, Soto AM, Sonnenschein C. Breast epithelial tissue morphology is affected in 3d cultures by species-specific collagen-based extracellular matrix. J Biomed Mater Res A. 2012;100(11):2905–12.

    PubMed  Google Scholar 

  125. Boekhoven J, Stupp SI. 25th anniversary article: supramolecular materials for regenerative medicine. Adv Mater (Deerfield Beach, Fla). 2014;26:1642–59.

    Google Scholar 

  126. Timpson P, McGhee EJ, Anderson KI. Imaging molecular dynamics in vivo—from cell biology to animal models. J Cell Sci. 2011;124(17):2877–90.

    PubMed  Google Scholar 

  127. Wilhelm S, Grobler B, Gulch M, Heinz H. Confocal laser scanning microscopy principles. Zeiss Jena [serial on the Internet]. 1997. Available from: http://zeiss-campus.magnet.fsu.edu/referencelibrary/pdfs/ZeissConfocalPrinciples.pdf.

  128. Sramkova M, Porat-Shliom N, Masedunkas A, Wigand T, Amornphimoltham P, Weigert R. Salivary glands: a powerful experimental system to study cell biology in live animals by intravital microscopy. Curr Front Perspect Cell Biol. 2012;503–18. doi: 10.577/33524.

  129. García-Caballero L, Quintas V, Prada-López I, Seoane J, Donos N, Tomás I. Chlorhexidine substantivity on salivary flora and plaque-like biofilm: an in situ model. PLoS ONE. 2013;8(12):e83522.

    PubMed Central  PubMed  Google Scholar 

  130. Pan F, Gan W-B. Two-photon imaging of dendritic spine development in the mouse cortex. Dev Neurobiol. 2008;68(6):771–8.

    PubMed  Google Scholar 

  131. Narunsky L, Oren R, Bochner F, Neeman M. Imaging aspects of the tumor stroma with therapeutic implications. Pharmacol Ther. 2014;141(2):192–208.

    PubMed  Google Scholar 

  132. Masedunskas A, Sramkova M, Parente L, Sales KU, Amornphimoltham P, Bugge TH, et al. Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy. Proc Natl Acad Sci. 2011;108(33):13552–7.

    PubMed Central  PubMed  Google Scholar 

  133. Hille C, Lahn M, Lohmannsroben H-G, Dosche C. Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands. Photochem Photobiol Sci. 2009;8(3):319–27. doi:10.1039/B813797H.

    PubMed  Google Scholar 

  134. Denk W. Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. Proc Natl Acad Sci. 1994;91(14):6629–33.

    PubMed Central  PubMed  Google Scholar 

  135. Pettit DL, Wang SSH, Gee KR, Augustine GJ. Chemical two-photon uncaging: a novel approach to mapping glutamate receptors. Neuron. 1997;19(3):465–71.

    PubMed  Google Scholar 

  136. Helmchen F, Denk W, Kerr JND. Miniaturization of two-photon microscopy for imaging in freely moving animals. Cold Spring Harb Protoc. 2013;2013(10):904–13.

    PubMed  Google Scholar 

  137. VanEngelenburg SB, Palmer AE. Fluorescent biosensors of protein function. Curr Opin Chem Biol. 2008;12(1):60–5.

    PubMed  Google Scholar 

  138. Takemoto K, Kuranaga E, Tonoki A, Nagai T, Miyawaki A, Miura M. Local initiation of caspase activation in drosophila salivary gland programmed cell death in vivo. Proc Natl Acad Sci. 2007;104(33):13367–72.

    PubMed Central  PubMed  Google Scholar 

  139. Shahzad A, Knapp M, Lang I, Köhler G. The use of fluorescence correlation spectroscopy (fcs) as an alternative biomarker detection technique: a preliminary study. J Cell Mol Med. 2011;15(12):2706–11.

    PubMed  Google Scholar 

  140. Axelrod D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol. 1981;89(1):141–5.

    PubMed  Google Scholar 

  141. Yang Z, Chen J, Yao J, Lin R, Meng J, Liu C, et al. Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo. Opt Express. 2014;22(2):1500–11.

    PubMed  Google Scholar 

  142. Zintchenko A, Susha AS, Concia M, Feldmann J, Wagner E, Rogach AL, et al. Drug nanocarriers labeled with near-infrared-emitting quantum dots (quantoplexes): imaging fast dynamics of distribution in living animals. Mol Ther. 2009;17(11):1849–56.

    PubMed Central  PubMed  Google Scholar 

  143. Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA, et al. Bright far-red fluorescent protein for whole-body imaging. Nat Methods. 2007;4(9):741–6 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  144. Strack RL, Hein B, Bhattacharyya D, Hell SW, Keenan RJ, Glick BS. A rapidly maturing far-red derivative of dsred-express2 for whole-cell labeling. Biochemistry. 2009;48(35):8279–81 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed Central  PubMed  Google Scholar 

  145. Lin MZ, McKeown MR, Ng HL, Aguilera TA, Shaner NC, Campbell RE, et al. Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem Biol. 2009;16(11):1169–79 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed Central  PubMed  Google Scholar 

  146. Shcherbo D, Shemiakina II, Ryabova AV, Luker KE, Schmidt BT, Souslova EA, et al. Near-infrared fluorescent proteins. Nat Methods. 2010;7(10):827–9 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  147. Shemiakina II, Ermakova GV, Cranfill PJ, Baird MA, Evans RA, Souslova EA, et al. A monomeric red fluorescent protein with low cytotoxicity. Nat Commun. 2012;3:1204. doi:10.1038/ncomms2208.

    PubMed  Google Scholar 

  148. Chalfie M, Tu G, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science. 1994;263(5148):802+ [Article].

    PubMed  Google Scholar 

  149. Ryu S-Y, Peixoto PM, Won JH, Yule DI, Kinnally KW. Extracellular atp and p2y2 receptors mediate intercellular ca2+ waves induced by mechanical stimulation in submandibular gland cells: role of mitochondrial regulation of store operated ca2+ entry. Cell Calcium. 2010;47(1):65–76.

    PubMed Central  PubMed  Google Scholar 

  150. Wu D, Schaffler MB, Weinbaum S, Spray DC. Matrix-dependent adhesion mediates network responses to physiological stimulation of the osteocyte cell process. Proc Natl Acad Sci. 2013;110(29):12096–101.

    PubMed Central  PubMed  Google Scholar 

  151. Christodoulides N, Mohanty S, Miller CS, Langub MC, Floriano PN, Dharshan P, et al. Application of microchip assay system for the measurement of c-reactive protein in human saliva. Lab Chip. 2005;5(3):261–9. doi:10.1039/B414194F.

    PubMed  Google Scholar 

  152. Holmström P, Syrjänen S, Laine P, Valle SL, Suni J. Hiv antibodies in whole saliva detected by elisa and western blot assays. J Med Virol. 1990;30(4):245–8.

    PubMed  Google Scholar 

  153. Xie H, Onsongo G, Popko J, de Jong EP, Cao J, Carlis JV, et al. Proteomics analysis of cells in whole saliva from oral cancer patients via value-added three-dimensional peptide fractionation and tandem mass spectrometry. Mol Cell Proteomics. 2008;7(3):486–98.

    PubMed  Google Scholar 

  154. Huyghe A, Francois P, Charbonnier Y, Tangomo-Bento M, Bonetti E-J, Paster BJ, et al. Novel microarray design strategy to study complex bacterial communities. Appl Environ Microbiol. 2008;74(6):1876–85.

    PubMed Central  PubMed  Google Scholar 

  155. Cruz HM, Marques VA, Villela-Nogueira CA, do Ó KMR, Lewis-Ximenez LL, Lampe E, et al. An evaluation of different saliva collection methods for detection of antibodies against hepatitis C virus (anti-HCV). J Oral Pathol Med. 2012;41(10):793–800.

    PubMed  Google Scholar 

  156. Elashoff D, Zhou H, Reiss J, Wang J, Xiao H, Henson B, et al. Prevalidation of salivary biomarkers for oral cancer detection. Cancer Epidemiol Biomarkers Prev. 2012;21(4):664–72.

    PubMed Central  PubMed  Google Scholar 

  157. Haeckel R, Hanecke P. Application of saliva for drug monitoring. An in vivo model for transmembrane transport. Eur J Clin Chem Clin Biochem. 1996;34(3):171–91.

    PubMed  Google Scholar 

  158. Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D, et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem. 2013;288(37):26888–97.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Harrington PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harrington, D.A., Martinez, M., Wu, D., Pradhan-Bhatt, S., Farach-Carson, M.C. (2015). Salivary Gland Tissue Engineering and Future Diagnostics. In: Streckfus, C. (eds) Advances in Salivary Diagnostics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45399-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45399-5_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45398-8

  • Online ISBN: 978-3-662-45399-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics