Skip to main content

Saliva Diagnostics for Oral Diseases

  • Chapter
  • First Online:
Advances in Salivary Diagnostics

Abstract

Oral diseases, or stomatognathic diseases, denote the diseases of the mouth (“stoma”) and jaw (“gnath”). Dental caries and periodontal diseases have been traditionally considered as the most important global oral health burdens. It is important to note that in oral diagnostics, the greatest challenges are determining the clinical utility of potential biomarkers for screening (in asymptomatic people), predicting the early onset of disease (prognostic tests), and evaluating the disease activity and the efficacy of therapy through innovative diagnostic tests. An oral diagnostic test, in principle, should provide valuable information for differential diagnosis, localization of disease, and severity of infection. This information can then be incorporated by the physician when planning treatments and will provide means for assessing the effectiveness of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stedman TL. The American heritage Stedman’s medical dictionary. Houghton Mifflin Co.; 2004.

    Google Scholar 

  2. Phillips C. Rinse and spit: saliva as a cancer biomarker source. NCI Cancer Bull. 2006 [cited 2013 October 25th]; Available from: http://www.cancer.gov/aboutnci/ncicancerbulletin/archive/2005/101105/page4.

  3. Pfaffe T, Cooper-White J, Beyerlein P, Kostner K, Punyadeera C. Diagnostic potential of saliva: current state and future applications. Clin Chem. 2011;57(5):675–87.

    PubMed  Google Scholar 

  4. Deepa T, Thirrunavukkarasu N. Saliva as a potential diagnostic tool. Indian J Med Sci. 2010;64(7):293.

    PubMed  Google Scholar 

  5. Mandel ID. Salivary diagnosis: promises, promises. Ann N Y Acad Sci. 1993;694(1 Saliva as a D):1–10.

    PubMed  Google Scholar 

  6. Schulz BL, Cooper-White J, Punyadeera CK. Saliva proteome research: current status and future outlook. Crit Rev Biotechnol. 2013;33(3):246–59.

    PubMed  Google Scholar 

  7. Navazesh M, Kumar SK, University of Southern California School of D. Measuring salivary flow: challenges and opportunities. J Am Dent Assoc. 2008;139(Suppl):35S–40.

    PubMed  Google Scholar 

  8. Turner RJ, Sugiya H. Understanding salivary fluid and protein secretion. Oral Dis. 2002;8(1):3–11.

    PubMed  Google Scholar 

  9. Hu S, Xie Y, Ramachandran P, Ogorzalek Loo RR, Li Y, Loo JA, et al. Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. Proteomics. 2005;5(6):1714–28.

    PubMed  Google Scholar 

  10. Huang C-M. Comparative proteomic analysis of human whole saliva. Arch Oral Biol. 2004;49(12):951–62.

    PubMed  Google Scholar 

  11. Wilmarth PA, Riviere MA, Rustvold DL, Lauten JD, Madden TE, David LL. Two-dimensional liquid chromatography study of the human whole saliva proteome. J Proteome Res. 2004;3(5):1017–23.

    PubMed  Google Scholar 

  12. Xie H, Rhodus NL, Griffin RJ, Carlis JV, Griffin TJ. A catalogue of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass spectrometry. Mol Cell Proteomics. 2005;4(11):1826–30.

    PubMed  Google Scholar 

  13. Yan W, Griffin TJ, Hagen F, Hu S, Wolinsky LE, Lee CS, et al. Systematic comparison of the human saliva and plasma proteomes. Proteomics Clin Appl. 2009;3(1):116–34.

    PubMed Central  PubMed  Google Scholar 

  14. Bandhakavi S, Stone MD, Onsongo G, Van Riper SK, Griffin TJ. A dynamic range compression and three-dimensional peptide fractionation analysis platform expands proteome coverage and the diagnostic potential of whole saliva. J Proteome Res. 2009;8(12):5590–600.

    PubMed Central  PubMed  Google Scholar 

  15. Christodoulides N, Anslyn E, Fox PC, McDevitt JT, Mohanty S, Miller CS, et al. Application of microchip assay system for the measurement of c-reactive protein in human saliva. Lab Chip. 2005;5(3):261.

    PubMed  Google Scholar 

  16. Dawes C. Considerations in the development of diagnostic tests on saliva. Ann N Y Acad Sci. 1993;694(1 Saliva as a D):265–9.

    PubMed  Google Scholar 

  17. Ghezzi EM, Ship JA. Aging and secretory reserve capacity of major salivary glands. J Dent Res. 2003;82(10):844–8.

    PubMed  Google Scholar 

  18. Fleissig Y, Reichenberg E, Redlich M, Zaks B, Deutsch O, Aframian DJ, et al. Comparative proteomic analysis of human oral fluids according to gender and age. Oral Dis. 2010;16(8):831.

    PubMed  Google Scholar 

  19. Oppenheim FG, Salih E, Siqueira WL, Zhang W, Helmerhorst EJ. Salivary proteome and its genetic polymorphisms. Ann N Y Acad Sci. 2007;1098(1):22–50.

    PubMed  Google Scholar 

  20. Proctor GB, Carpenter GH, Garrett JR. Sympathetic decentralization abolishes increased secretion of immunoglobulin a evoked by parasympathetic stimulation of rat submandibular glands. J Neuroimmunol. 2000;109(2):147–54.

    PubMed  Google Scholar 

  21. Edwards AV, Titchen DA. Synergism in the autonomic regulation of parotid secretion of protein in sheep. J Physiol. 1992;451:1–15.

    PubMed Central  PubMed  Google Scholar 

  22. Carpenter GH, Proctor GB, Garrett JR. Preganglionic parasympathectomy decreases salivary siga secretion rates from the rat submandibular gland. J Neuroimmunol. 2005;160(1–2):4–11.

    PubMed  Google Scholar 

  23. Navazesh M, Christensen C, Brightman V. Clinical criteria for the diagnosis of salivary gland hypofunction. J Dent Res. 1992;71(7):1363–9.

    PubMed  Google Scholar 

  24. Topkas E, Keith P, Dimeski G, Cooper-White J, Punyadeera C. Evaluation of saliva collection devices for the analysis of proteins. Clin Chim Acta Int J Clin Chem. 2012;413(13–14):1066–70.

    Google Scholar 

  25. Michishige F, Kanno K, Yoshinaga S, Hinode D, Takehisa Y, Yasuoka S. Effect of saliva collection method on the concentration of protein components in saliva. J Med Invest. 2006;53(1,2):140–6.

    PubMed  Google Scholar 

  26. Hansen AM, Garde AH, Persson R. Sources of biological and methodological variation in salivary cortisol and their impact on measurement among healthy adults: a review. Scand J Clin Lab Invest. 2008;68(6):448–58.

    PubMed  Google Scholar 

  27. Izawa S, Miki K, Liu X, Ogawa N. The diurnal patterns of salivary interleukin-6 and c-reactive protein in healthy young adults. Brain Behav Immun. 2013;27(1):38–41.

    PubMed  Google Scholar 

  28. Helmerhorst EJ, Oppenheim FG. Saliva: a dynamic proteome. J Dent Res. 2007;86(8):680–93.

    PubMed  Google Scholar 

  29. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA. Climate change 2001: the scientific basis: contribution of working group i to the third assessment report of the intergovernmental panel on climate change. 1st ed. Cambridge University Press, United Kingdom and New York, NY, USA; 2001.

    Google Scholar 

  30. Schottenfeld D, Beebe-Dimmer J. Chronic inflammation: a common and important factor in the pathogenesis of neoplasia. CA Cancer J Clin. 2006;56(2):69.

    PubMed  Google Scholar 

  31. Feller L, Altini M, Lemmer J. Inflammation in the context of oral cancer. Oral Oncol. 2013;49(9):887–92.

    PubMed  Google Scholar 

  32. Roy HK, Khandekar JD. Biomarkers for the early detection of cancer: an inflammatory concept. Arch Intern Med. 2007;167(17):1822–4.

    PubMed  Google Scholar 

  33. Anonymous. Early detection of ovarian cancer. Pract Nurse. 2009;37(6):6.

    Google Scholar 

  34. Thygesen K, Chaitman B, Clemmensen PM, Dellborg M, Hod H, Porela P, et al. Universal definition of myocardial infarction. Circulation. 2007;116(22):2634–53.

    PubMed  Google Scholar 

  35. van der Waal I. Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral Oncol. 2009;45(4–5):317–23.

    PubMed  Google Scholar 

  36. Welch H, Hasbun R. Lumbar puncture and cerebrospinal fluid analysis. Handb Clin Neurol. 2010;96:31–49.

    PubMed  Google Scholar 

  37. Majed B, Zephir H, Pichonnier-Cassagne V, Yazdanpanah Y, Lestavel P, Valette P, et al. Lumbar punctures: use and diagnostic efficiency in emergency medical departments. Int J Emerg Med. 2009;2(4):227–35.

    PubMed Central  PubMed  Google Scholar 

  38. Stewart H, Reuben A, McDonald J. Lp or not lp, that is the question: gold standard or unnecessary procedure in subarachnoid haemorrhage? Emerg Med J. 2013;31(9):720–3.

    PubMed  Google Scholar 

  39. Haraldsson B, Sorensson J. Why do we not all have proteinuria? An update of our current understanding of the glomerular barrier. News Physiol Sci. 2004;19:7–10.

    PubMed  Google Scholar 

  40. Maunsbach AB. Absorption of i125-labeled homologous albumin by rat kidney proximal tubule cells. A study of microperfused single proximal tubules by electron microscopic autoradiography and histochemistry. J Am Soc Nephrol. 1997;8(2):323–51; discussion 327–31.

    PubMed  Google Scholar 

  41. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101(36):13368–73.

    PubMed Central  PubMed  Google Scholar 

  42. Klein D, Bussow H, Fewou SN, Gieselmann V. Exocytosis of storage material in a lysosomal disorder. Biochem Biophys Res Commun. 2005;327(3):663–7.

    PubMed  Google Scholar 

  43. Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M. The human urinary proteome contains more than 1,500 proteins, including a large proportion of membrane proteins. Genome Biol. 2006;7(9):R80.

    PubMed Central  PubMed  Google Scholar 

  44. Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, Just I, et al. Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol. 2006;7(3):230–40.

    PubMed  Google Scholar 

  45. Wittke S, Haubitz M, Walden M, Rohde F, Schwarz A, Mengel M, et al. Detection of acute tubulointerstitial rejection by proteomic analysis of urinary samples in renal transplant recipients. Am J Transplant. 2005;5(10):2479–88.

    PubMed  Google Scholar 

  46. Meier M, Kaiser T, Herrmann A, Knueppel S, Hillmann M, Koester P, et al. Identification of urinary protein pattern in type 1 diabetic adolescents with early diabetic nephropathy by a novel combined proteome analysis. J Diabetes Complicat. 2005;19(4):223–32.

    PubMed  Google Scholar 

  47. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (ngal) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.

    PubMed  Google Scholar 

  48. Rehman I, Azzouzi AR, Catto JW, Allen S, Cross SS, Feeley K, et al. Proteomic analysis of voided urine after prostatic massage from patients with prostate cancer: a pilot study. Urology. 2004;64(6):1238–43.

    PubMed  Google Scholar 

  49. Zhang YF, Wu DL, Guan M, Liu WW, Wu Z, Chen YM, et al. Tree analysis of mass spectral urine profiles discriminates transitional cell carcinoma of the bladder from noncancer patient. Clin Biochem. 2004;37(9):772–9.

    PubMed  Google Scholar 

  50. Pieper R, Gatlin CL, McGrath AM, Makusky AJ, Mondal M, Seonarain M, et al. Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1,400 distinct protein spots. Proteomics. 2004;4(4):1159–74.

    PubMed  Google Scholar 

  51. Celis JE, Wolf H, Ostergaard M. Bladder squamous cell carcinoma biomarkers derived from proteomics. Electrophoresis. 2000;21(11):2115–21.

    PubMed  Google Scholar 

  52. Rasmussen HH, Orntoft TF, Wolf H, Celis JE. Towards a comprehensive database of proteins from the urine of patients with bladder cancer. J Urol. 1996;155(6):2113–9.

    PubMed  Google Scholar 

  53. Feng C, Wu Z, Guo T, Jiang H, Guan M, Zhang Y, et al. Blca-4 expression is related to mmp-9, vegf, il-1alpha and il-8 in bladder cancer but not to pedf, tnf-alpha or angiogenesis. Pathol Biol (Paris). 2012;60(3):e36–40.

    Google Scholar 

  54. Fujita K, Ewing CM, Isaacs WB, Pavlovich CP. Immunomodulatory il-18 binding protein is produced by prostate cancer cells and its levels in urine and serum correlate with tumor status. Int J Cancer. 2011;129(2):424–32.

    PubMed Central  PubMed  Google Scholar 

  55. Idasiak-Piechocka I, Oko A, Pawliczak E, Kaczmarek E, Czekalski S. Urinary excretion of soluble tumour necrosis factor receptor 1 as a marker of increased risk of progressive kidney function deterioration in patients with primary chronic glomerulonephritis. Nephrol Dial Transplant. 2010;25(12):3948–56.

    PubMed  Google Scholar 

  56. Liu BC, Zhang L, Lv LL, Wang YL, Liu DG, Zhang XL. Application of antibody array technology in the analysis of urinary cytokine profiles in patients with chronic kidney disease. Am J Nephrol. 2006;26(5):483–90.

    PubMed  Google Scholar 

  57. Margel D, Pesvner-Fischer M, Baniel J, Yossepowitch O, Cohen IR. Stress proteins and cytokines are urinary biomarkers for diagnosis and staging of bladder cancer. Eur Urol. 2011;59(1):113–9.

    PubMed  Google Scholar 

  58. Meijer E, Boertien WE, Nauta FL, Bakker SJ, van Oeveren W, Rook M, et al. Association of urinary biomarkers with disease severity in patients with autosomal dominant polycystic kidney disease: a cross-sectional analysis. Am J Kidney Dis. 2010;56(5):883–95.

    PubMed  Google Scholar 

  59. Nauta FL, Boertien WE, Bakker SJ, van Goor H, van Oeveren W, de Jong PE, et al. Glomerular and tubular damage markers are elevated in patients with diabetes. Diabetes Care. 2011;34(4):975–81.

    PubMed Central  PubMed  Google Scholar 

  60. Ni J, Huang HQ, Lu LL, Zheng M, Liu BC. Influence of irbesartan on the urinary excretion of cytokines in patients with chronic kidney disease. Chin Med J (Engl). 2012;125(6):1147–52.

    Google Scholar 

  61. Nielsen SE, Hansen HP, Jensen BR, Parving HH, Rossing P. Urinary neutrophil gelatinase-associated lipocalin and progression of diabetic nephropathy in type 1 diabetic patients in a four-year follow-up study. Nephron Clin Pract. 2011;118(2):c130–5.

    PubMed  Google Scholar 

  62. Parikh CR, Dahl NK, Chapman AB, Bost JE, Edelstein CL, Comer DM, et al. Evaluation of urine biomarkers of kidney injury in polycystic kidney disease. Kidney Int. 2012;81(8):784–90.

    PubMed Central  PubMed  Google Scholar 

  63. Sola-Del Valle DA, Mohan S, Cheng JT, Paragas NA, Sise ME, D’Agati VD, et al. Urinary ngal is a useful clinical biomarker of hiv-associated nephropathy. Nephrol Dial Transplant. 2011;26(7):2387–90.

    PubMed Central  PubMed  Google Scholar 

  64. Suen JL, Liu CC, Lin YS, Tsai YF, Juo SH, Chou YH. Urinary chemokines/cytokines are elevated in patients with urolithiasis. Urol Res. 2010;38(2):81–7.

    PubMed  Google Scholar 

  65. Urquidi V, Kim J, Chang M, Dai Y, Rosser CJ, Goodison S. Ccl18 in a multiplex urine-based assay for the detection of bladder cancer. PLoS One. 2012;7(5):e37797. U6 – ctx_ver=Z3988-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info:sid/summonserialssolutionscom&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rftgenre=article&rftatitle=CCL18+in+a+multiplex+urine-based+assay+for+the+detection+of+bladder+cancer&rftjtitle=PloS+one&rftau=Urquidi%2C+Virginia&rftau=Kim%2C+Jeongsoon&rftau=Chang%2C+Myron&rftau=Dai%2C+Yunfeng&rftdate=2012&rfteissn=1932-6203&rftvolume=7&rftissue=5&rftspage=e37797&rft_id=info:pmid/22629457&rftexternalDocID=22629457&paramdict=en-US U7 – Journal Article U8 – FETCH-LOGICAL-p1142-ee209faf3c3a88f0d62a1895d4e493102f15aea302bd289c6cce0a55d5b8e1741.

    PubMed Central  PubMed  Google Scholar 

  66. Wasilewska A, Taranta-Janusz K, Debek W, Zoch-Zwierz W, Kuroczycka-Saniutycz E. Kim-1 and ngal: new markers of obstructive nephropathy. Pediatr Nephrol. 2011;26(4):579–86.

    PubMed Central  PubMed  Google Scholar 

  67. Wasilewska A, Zoch-Zwierz W, Taranta-Janusz K, Kolodziejczyk Z. Urinary monocyte chemoattractant protein-1 excretion in children with glomerular proteinuria. Scand J Urol Nephrol. 2011;45(1):52–9.

    PubMed  Google Scholar 

  68. Dams R, Choo RE, Lambert WE, Jones H, Huestis MA. Oral fluid as an alternative matrix to monitor opiate and cocaine use in substance-abuse treatment patients. Drug Alcohol Depend. 2007;87(2–3):258–67.

    PubMed Central  PubMed  Google Scholar 

  69. Kefalides PT. Saliva research leads to new diagnostic tools and therapeutic options. Ann Intern Med. 1999;131(12):991.

    PubMed  Google Scholar 

  70. Karjalainen S, Sewon L, Soderling E, Larsson B, Johansson I, Simell O, et al. Salivary cholesterol of healthy adults in relation to serum cholesterol concentration and oral health. J Dent Res. 1997;76(10):1637–43.

    PubMed  Google Scholar 

  71. Ceccato F, Barbot M, Zilio M, Ferasin S, Occhi G, Daniele A, et al. Performance of salivary cortisol in the diagnosis of cushing’s syndrome, adrenal incidentaloma, and adrenal insufficiency. Eur J Endocrinol. 2013;169(1):31–6.

    PubMed  Google Scholar 

  72. Fransen K, Vermoesen T, Beelaert G, Menten J, Hutse V, Wouters K, et al. Using conventional HIV tests on oral fluid. J Virol Methods. 2013;194:46–51.

    PubMed  Google Scholar 

  73. Streckfus C, Bigler L, Dellinger T, Dai X, Kingman A, Thigpen JT. The presence of soluble c-erbb-2 in saliva and serum among women with breast carcinoma: a preliminary study. Clin Cancer Res. 2000;6(6):2363–70.

    PubMed  Google Scholar 

  74. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (ylds) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2163–96.

    PubMed  Google Scholar 

  75. WHO. The world oral health report: continuous improvement of oral health in the 21st century – the approach of the who global oral health programme. Geneva: World Health Organization; 2003.

    Google Scholar 

  76. Suddick RP, Harris NO. Historical perspectives of oral biology: a series. Crit Rev Oral Bio Med. 1990;1(2):135–51.

    Google Scholar 

  77. Gerabek WE. The tooth-worm: historical aspects of a popular medical belief. Clin Oral Investig. 1999;3(1):1–6.

    PubMed  Google Scholar 

  78. Miller WD. The human mouth as a focus of infection. Dental Cosmos. 1891;33(9):18.

    Google Scholar 

  79. Haffajee AD, Socransky SS. Microbiology of periodontal diseases: introduction. Periodontol 2000. 2005;38:9–12.

    PubMed  Google Scholar 

  80. Vitorino R, Lobo MJ, Duarte JR, Ferrer-Correia AJ, Domingues PM, Amado FM. The role of salivary peptides in dental caries. Biomed Chromatogr. 2005;19(3):214–22.

    PubMed  Google Scholar 

  81. Mazengo MC, Tenovuo J, Hausen H. Dental caries in relation to diet, saliva and cariogenic microorganisms in tanzanians of selected age groups. Community Dent Oral Epidemiol. 1996;24(3):169–74.

    PubMed  Google Scholar 

  82. Streckfus CF, Bigler LR. Saliva as a diagnostic fluid. Oral Dis. 2002;8(2):69–76.

    PubMed  Google Scholar 

  83. Tulunoglu Ö, Demirtas S, Tulunoglu I. Total antioxidant levels of saliva in children related to caries, age, and gender. Int J Paediatr Dent. 2006;16(3):186–91.

    PubMed  Google Scholar 

  84. Ayad M, Van Wuyckhuyse BC, Minaguchi K, Raubertas RF, Bedi GS, Billings RJ, et al. The association of basic proline-rich peptides from human parotid gland secretions with caries experience. J Dent Res. 2000;79(4):976–82.

    PubMed  Google Scholar 

  85. Thibodeau EA, O’Sullivan DM. Salivary mutans streptococci and caries development in the primary and mixed dentitions of children. Community Dent Oral Epidemiol. 1999;27(6):406–12.

    PubMed  Google Scholar 

  86. van Palenstein Helderman WH, Mikx FH, Van’t Hof MA, Truin G, Kalsbeek H. The value of salivary bacterial counts as a supplement to past caries experience as caries predictor in children. Eur J Oral Sci. 2001;109(5):312–5.

    PubMed  Google Scholar 

  87. Zhang Q, Bian Z, Fan M, van Palenstein Helderman WH. Salivary mutans streptococci counts as indicators in caries risk assessment in 6–7-year-old chinese children. J Dent. 2007;35(2):177–80.

    PubMed  Google Scholar 

  88. Anderson LC, Mandel ID. Salivary protein polymorphisms in caries-resistant adults. J Dent Res. 1982;61(10):1167–8.

    PubMed  Google Scholar 

  89. Roa NS, Chaves M, Gomez M, Jaramillo LM. Association of salivary proteins with dental caries in a Colombian population. Acta Odontol Latinoam. 2008;21(1):69–75.

    PubMed  Google Scholar 

  90. Denny PC. A saliva-based prognostic test for dental caries susceptibility. Am Dent Hyg Assoc. 2009;83(4):175–6.

    Google Scholar 

  91. Research NIoDaC. Periodontal (gum) disease: causes, symptoms and treatments. 2013 [updated August 2012; cited 2013 10/10/2013]; Available from: http://www.nidcr.nih.gov/OralHealth/Topics/GumDiseases/PeriodontalGumDisease.htm.

  92. Group MR. Millenium Research Group. Global markets for dental implants 2007. Millenium Research Group: Toronto, Canada, 2008.

    Google Scholar 

  93. Preber H, Bergström J. Cigarette smoking in patients referred for periodontal treatment. Scand J Dent Res. 1986;94(2):102.

    PubMed  Google Scholar 

  94. Borojevic T. Smoking and periodontal disease. Materia Socio-Medica. 2012;24(4):274.

    PubMed Central  PubMed  Google Scholar 

  95. Anonymous. Emotional stress could cause periodontal disease. 2012 [cited 2013 October 15th]; Available from: http://www.knowyourteeth.com/infobites/abc/article/?abc=G&iid=324&aid=1249.

  96. Lieff S, Boggess KA, Murtha AP, Jared H, Madianos PN, Moss K, et al. The oral conditions and pregnancy study: periodontal status of a cohort of pregnant women. J Periodontol. 2004;75(1):116–26.

    PubMed  Google Scholar 

  97. Wilder R, Robinson C, Jared HL, Lieff S, Boggess K. Obstetricians’ knowledge and practice behaviors concerning periodontal health and preterm delivery and low birth weight. J Dent Hyg. 2007;81(4):81.

    PubMed  Google Scholar 

  98. Giannobile WV, Beikler T, Kinney JS, Ramseier CA, Morelli T, Wong DT. Saliva as a diagnostic tool for periodontal disease: current state and future direction. Periodontology 2000. 2009;50:52–64.

    PubMed  Google Scholar 

  99. Khashu H, Baiju CS, Bansal SR, Chillar A. Salivary biomarkers: a periodontal overview. J Oral Health Community Dent. 2012;6(1):28–33.

    Google Scholar 

  100. Groenink J, Walgreen-Weterings E, Nazmi K, Bolscher JG, Veerman EC, Van Winkelhoff AJ. Salivary lactoferrin and low-mr mucin mg2 in actinobacillus actinomycetemcomitans-associated periodontitis. J Clin Periodontol. 1999;26:269–75.

    PubMed  Google Scholar 

  101. Warnakulasuriya S, Johnson NW, Van Der Waal I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med. 2007;36(10):575–80.

    PubMed  Google Scholar 

  102. Napier SS, Cowan CG, Gregg TA, Stevenson M, Lamey PJ, Toner PG. Potentially malignant oral lesions in Northern Ireland: size (extent) matters. Oral Dis. 2003;9(3):129–37.

    PubMed  Google Scholar 

  103. Axell T. Occurrence of leukoplakia and some other oral white lesions among 20,333 adult Swedish people. Community Dent Oral Epidemiol. 1987;15(1):46–51.

    PubMed  Google Scholar 

  104. Axell T, Rundquist L. Oral lichen planus–a demographic study. Community Dent Oral Epidemiol. 1987;15(1):52–6.

    PubMed  Google Scholar 

  105. Amarasinghe HK, Usgodaarachchi US, Johnson NW, Lalloo R, Warnakulasuriya S. Betel-quid chewing with or without tobacco is a major risk factor for oral potentially malignant disorders in Sri Lanka: a case-control study. Oral Oncol. 2010;46(4):297–301.

    PubMed  Google Scholar 

  106. Chung CH, Yang YH, Wang TY, Shieh TY, Warnakulasuriya S. Oral precancerous disorders associated with areca quid chewing, smoking, and alcohol drinking in southern Taiwan. J Oral Pathol Med. 2005;34(8):460–6.

    PubMed  Google Scholar 

  107. Napier SS, Speight PM. Natural history of potentially malignant oral lesions and conditions: an overview of the literature. J Oral Pathol Med. 2008;37(1):1–10.

    PubMed  Google Scholar 

  108. GLOBOCAN. World cancer report. International Agency for Research on Cancer; 2008 [cited 2011 Feb. 26]; Available from: http://globocan.iarc.fr/factsheets/populations/factsheet.asp?uno=900.

  109. Rethman MP, Carpenter W, Cohen EE, Epstein J, Evans CA, Flaitz CM, et al. Evidence-based clinical recommendations regarding screening for oral squamous cell carcinomas. J Am Dent Assoc. 2010;141(5):509–20.

    PubMed  Google Scholar 

  110. Johnson NW, Jayasekara P, Amarasinghe AA. Squamous cell carcinoma and precursor lesions of the oral cavity: epidemiology and aetiology. Periodontol 2000. 2011;57(1):19–37.

    PubMed  Google Scholar 

  111. Warnakulasuriya S, Sutherland G, Scully C. Tobacco, oral cancer, and treatment of dependence. Oral Oncol. 2005;41(3):244–60.

    PubMed  Google Scholar 

  112. Andre K, Schraub S, Mercier M, Bontemps P. Role of alcohol and tobacco in the aetiology of head and neck cancer: a case-control study in the Doubs region of France. Eur J Cancer B Oral Oncol. 1995;31B(5):301–9 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  113. Kreimer AR, Clifford GM, Boyle P, Franceschi S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev. 2005;14(2):467–75.

    PubMed  Google Scholar 

  114. Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11(1):9–22.

    PubMed  Google Scholar 

  115. Thomas SJ, Bain CJ, Battistutta D, Ness AR, Paissat D, Maclennan R. Betel quid not containing tobacco and oral cancer: a report on a case-control study in Papua New Guinea and a meta-analysis of current evidence. Int J Cancer J Int Du Cancer. 2007;120(6):1318–23.

    Google Scholar 

  116. Jeng JH, Chang MC, Hahn LJ. Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives. Oral Oncol. 2001;37(6):477–92.

    PubMed  Google Scholar 

  117. Ouko LA, Shantikumar K, Knezovich J, Haycock P, Schnugh DJ, Ramsay M. Effect of alcohol consumption on cpg methylation in the differentially methylated regions of h19 and ig-dmr in male gametes: implications for fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2009;33(9):1615–27.

    PubMed  Google Scholar 

  118. Muwonge R, Ramadas K, Sankila R, Thara S, Thomas G, Vinoda J, et al. Role of tobacco smoking, chewing and alcohol drinking in the risk of oral cancer in Trivandrum, India: a nested case-control design using incident cancer cases. Oral Oncol. 2008;44(5):446–54.

    PubMed  Google Scholar 

  119. Levi F, Pasche C, La Vecchia C, Lucchini F, Franceschi S, Monnier P. Food groups and risk of oral and pharyngeal cancer. Int J Cancer J Int Du Cancer. 1998;77(5):705–9.

    Google Scholar 

  120. Nagadia R, Pandit P, Coman WB, Cooper-White J, Punyadeera C. Mirnas in head and neck cancer revisited. Cel Oncol (Dordrecht). 2013;36(1):1–7.

    Google Scholar 

  121. Ovchinnikov DA, Cooper MA, Pandit P, Coman WB, Cooper-White JJ, Keith P, et al. Tumor-suppressor gene promoter hypermethylation in saliva of head and neck cancer patients. Transl Oncol. 2012;5(5):321–6.

    PubMed Central  PubMed  Google Scholar 

  122. Childs G, Fazzari M, Kung G, Kawachi N, Brandwein-Gensler M, McLemore M, et al. Low-level expression of micrornas let-7d and mir-205 are prognostic markers of head and neck squamous cell carcinoma. Am J Pathol. 2009;174(3):736–45.

    PubMed Central  PubMed  Google Scholar 

  123. Berckmans RJ, Sturk A, van Tienen LM, Schaap MC, Nieuwland R. Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood. 2011;117(11):3172–80.

    PubMed  Google Scholar 

  124. Redman RS. On approaches to the functional restoration of salivary glands damaged by radiation therapy for head and neck cancer, with a review of related aspects of salivary gland morphology and development. Biotech Histochem. 2008;83(3):103–30.

    PubMed Central  PubMed  Google Scholar 

  125. Schussel J, Zhou XC, Zhang Z, Pattani K, Bermudez F, Jean-Charles G, et al. Ednrb and dcc salivary rinse hypermethylation has a similar performance as expert clinical examination in discrimination of oral cancer/dysplasia versus benign lesions. Clin Cancer Res. 2013;19(12):3268–75.

    PubMed Central  PubMed  Google Scholar 

  126. Trogdon JG, Ekwueme DU, Subramanian S, Crouse W. Economies of scale in federally-funded state-organized public health programs: Results from the national breast and cervical cancer early detection programs. Health Care Manag Sci. 2014;17:321–30.

    Google Scholar 

  127. Ma X, Wang R, Long JB, Ross JS, Soulos PR, Yu JB, et al. The cost implications of prostate cancer screening in the medicare population. Cancer. 2013;120(1):96–102.

    PubMed  Google Scholar 

  128. Salazar C, et al. miRNAs in human papilloma virus associated oral and oropharyngeal squamous cell carcinomas. Exp Rev Mol Diag. 2014;14(8):1033–40.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Queensland Government Smart Futures Co-investment Funding Scheme, University of Queensland Foundation Research Excellence Scheme, and the University of Queensland internal strategic funds. Also, we would like to thank Ms. Anthea Gibbons for her assistance in editing the book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chamindie Punyadeera PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, X., Kulasinghe, A., Karim, R.S., Punyadeera, C. (2015). Saliva Diagnostics for Oral Diseases. In: Streckfus, C. (eds) Advances in Salivary Diagnostics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45399-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45399-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45398-8

  • Online ISBN: 978-3-662-45399-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics