Skip to main content

Development of Nanoparticle-Enabled Protein Biomarker Discovery: Implementation for Saliva-Based Traumatic Brain Injury Detection

  • Chapter
  • First Online:
Advances in Salivary Diagnostics

Abstract

In this chapter we will discuss a new approach for amplifying low-abundance proteins for biomarker discovery and how this new approach can be applied to identifying new markers for the detection of traumatic brain injury (TBI) and concussion. Of particular focus is the discovery of nonsubjective, sensitive, and specific biomarkers for early detection of TBI/concussion that can be quantified accurately and which can be measured in an easily obtainable biofluid. We propose that such a method can be applied to TBI detection in saliva—a biofluid that heretofore has not been considered for this application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmid KE, Tortella FC. The diagnosis of traumatic brain injury on the battlefield. Front Neurol. 2012;3:90.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Jinguji TM, Bompadre V, Harmon KG, Satchell EK, Gilbert K, Wild J, Eary JF. Sport concussion assessment tool–2: baseline values for high school athletes. Br J Sports Med. 2012;46:365–70.

    Article  PubMed  Google Scholar 

  3. Mansell JL, Tierney RT, Higgins M, McDevitt J, Toone N, Glutting J. Concussive signs and symptoms following head impacts in collegiate athletes. Brain Inj. 2010;24:1070–4.

    Article  PubMed  Google Scholar 

  4. Chastain CA, Oyoyo UE, Zipperman M, Joo E, Ashwal S, Shutter LA, Tong KA. Predicting outcomes of traumatic brain injury by imaging modality and injury distribution. J Neurotrauma. 2009;26:1183–96.

    Article  PubMed  Google Scholar 

  5. Mondello S, Papa L, Buki A, Bullock MR, Czeiter E, Tortella FC, Wang KK, Hayes RL. Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: a case control study. Crit Care. 2011;15:R156.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Prabhu SP. The role of neuroimaging in sport-related concussion. Clin Sports Med. 2011;30:103.

    Article  PubMed  Google Scholar 

  7. Kumar R, Husain M, Gupta RK, Hasan KM, Haris M, Agarwal AK, Pandey CM, Narayana PA. Serial changes in the white matter diffusion tensor imaging metrics in moderate traumatic brain injury and correlation with neuro-cognitive function. J Neurotrauma. 2009;26:481–95.

    Article  PubMed  Google Scholar 

  8. Nuwer MR, Hovda DA, Schrader LM, Vespa PM. Routine and quantitative EEG in mild traumatic brain injury. Clin Neurophysiol. 2005;116:2001–25.

    Article  PubMed  Google Scholar 

  9. Maruta J, Suh M, Niogi SN, Mukherjee P, Ghajar J. Visual tracking synchronization as a metric for concussion screening. J Head Trauma Rehabil. 2010;25:293–305.

    Article  PubMed  Google Scholar 

  10. Dash PK, Zhao J, Hergenroeder G, Moore AN. Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury. Neurotherapeutics. 2010;7:100–14.

    Article  PubMed  Google Scholar 

  11. Marion DW. Current diagnostic and therapeutic challenges. Trauma Brain Inj. 2012:313–23.

    Google Scholar 

  12. Graham R, Rivara FP, Ford MA, Mason Spicer C. Eds. Treatment and management of prolonged symptoms and post-concussion syndrome. In: Sports-related concussions in youth: Improving the science, changing the culture. Institute of Medicine of the National Academies, The National Academies Press, Washington, DC, 2013. Available at http://www.iom.edu/Reports/2013/Sports-Related-Concussions-in-Youth-Improving-the-Science-Changing-the-Culture.aspx. Accessed November 13, 2013

  13. Diaz-Arrastia R, Kochanek PM, Bergold P, Kenney K, Marx C, Grimes J, Loh Y, Adam G, Oskvig DB, Curley K. Pharmacotherapy of traumatic brain injury: state of the science and the road forward report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma. 2013;31:135–58.

    Article  Google Scholar 

  14. Luchini A, Longo C, Espina V, Petricoin III EF, Liotta LA. Nanoparticle technology: addressing the fundamental roadblocks to protein biomarker discovery. J Mater Chem. 2009;19:5071–7.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Liotta LA, Petricoin EF. Omics and cancer biomarkers: link to the biological truth or bear the consequences. Cancer Epidemiol Biomarkers Prev. 2012;21:1229–35.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Casanova-Salas I, Rubio-Briones J, Fernández-Serra A, López-Guerrero JA. miRNAs as biomarkers in prostate cancer. Clin Transl Oncol. 2012;14:803–11.

    Article  PubMed  Google Scholar 

  17. Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A. Biomarkers predicting clinical outcome of epidermal growth factor receptor–targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst. 2009;101:1308–24.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Socinski MA. The emerging role of biomarkers in advanced non–small-cell lung cancer. Clin Lung Cancer. 2010;11:149–59.

    Article  PubMed  Google Scholar 

  19. Devic I, Hwang HJ, Edgar JS, Izutsu K, Presland R, Pan C, Goodlett DR, Wang Y, Armaly J, Tumas V. Salivary alpha-synuclein and DJ-1: potential biomarkers for Parkinson’s disease. Brain. 2011;134:e178.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Patel S, Shah RJ, Coleman P, Sabbagh M. Potential peripheral biomarkers for the diagnosis of Alzheimer’s disease. Int J Alzheimers Dis. 2011;2011:1–9.

    Article  Google Scholar 

  21. Readnower RD, Chavko M, Adeeb S, Conroy MD, Pauly JR, McCarron RM, Sullivan PG. Increase in blood–brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J Neurosci Res. 2010;88:3530–9.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ingebrigtsen T, Romner B. Biochemical serum markers of traumatic brain injury. J Trauma Acute Care Surg. 2002;52:798–808.

    Article  Google Scholar 

  23. Berger RP, Hayes RL, Richichi R, Beers SR, Wang KKW. Serum concentrations of ubiquitin C-terminal hydrolase-L1 and αII-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI. J Neurotrauma. 2012;29:162–7.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Korfias S, Papadimitriou A, Stranjalis G, Bakoula C, Daskalakis G, Antsaklis A, Sakas DE. Serum biochemical markers of brain injury. Mini Rev Med Chem. 2009;9:227–34.

    Article  PubMed  Google Scholar 

  25. Savola O, Pyhtinen J, Leino TK, Siitonen S, Niemelä O, Hillbom M. Effects of head and extracranial injuries on serum protein S100B levels in trauma patients. J Trauma Acute Care Surg. 2004;56:1229–34.

    Article  Google Scholar 

  26. Townend W, Dibble C, Abid K, Vail A, Sherwood R, Lecky F. Rapid elimination of protein S-100B from serum after minor head trauma. J Neurotrauma. 2006;23:149–55.

    Article  PubMed  Google Scholar 

  27. Bazarian JJ, Zemlan FP, Mookerjee S, Stigbrand T. Serum S-100B and cleaved-tau are poor predictors of long-term outcome after mild traumatic brain injury. Brain Inj. 2006;20:759–65.

    Article  PubMed  Google Scholar 

  28. Berger RP, Pierce MC, Wisniewski SR, Adelson PD, Kochanek PM. Serum S100B concentrations are increased after closed head injury in children: a preliminary study. J Neurotrauma. 2002;19:1405–9.

    Article  PubMed  Google Scholar 

  29. Müller K, Townend W, Biasca N, Undén J, Waterloo K, Romner B, Ingebrigtsen T. S100B serum level predicts computed tomography findings after minor head injury. J Trauma. 2007;62:1452.

    Article  PubMed  Google Scholar 

  30. Undén J, Romner B. A new objective method for CT triage after minor head injury-serum S100B. Scand J Clin Lab Invest. 2009;69:13–7.

    Article  PubMed  Google Scholar 

  31. Nylen K, Öst M, Csajbok LZ, Nilsson I, Blennow K, Nellgård B, Rosengren L. Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J Neurol Sci. 2006;240:85–91.

    Article  PubMed  Google Scholar 

  32. Nylén K, Csajbok LZ, Öst M, Rashid A, Blennow K, Nellgård B, Rosengren L. Serum glial fibrillary acidic protein is related to focal brain injury and outcome after aneurysmal subarachnoid hemorrhage. Stroke. 2007;38:1489–94.

    Article  PubMed  Google Scholar 

  33. Eng LF, Vanderhaeghen JJ, Bignami A, Gerstl B. An acidic protein isolated from fibrous astrocytes. Brain Res. 1971;28:351.

    Article  PubMed  Google Scholar 

  34. Herrmann M, Vos P, Wunderlich MT, de Bruijn CHMM, Lamers KJB. Release of glial tissue–specific proteins after acute stroke a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke. 2000;31:2670–7.

    Article  PubMed  Google Scholar 

  35. Missler U, Wiesmann M, Wittmann G, Magerkurth O, Hagenström H. Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem. 1999;45:138–41.

    PubMed  Google Scholar 

  36. ErgĂĽn R, Bostanci U, Akdemir G, BeĹźkonakli E, KaptanoÄźlu E, GĂĽrsoy F, TaĹźkin Y. Prognostic value of serum neuron-specific enolase levels after head injury. Neurol Res. 1998;20:418.

    PubMed  Google Scholar 

  37. Ross SA, Cunningham RT, Johnston CF, Rowlands BJ. Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg. 1996;10:471–6.

    Article  PubMed  Google Scholar 

  38. Yamazaki Y, Yada K, Morii S, Kitahara T, Ohwada T. Diagnostic significance of serum neuron-specific enolase and myelin basic protein assay in patients with acute head injury. Surg Neurol. 1995;43:267–71.

    Article  PubMed  Google Scholar 

  39. Marangos PJ, Schmechel DE. Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci. 1987;10:269–95.

    Article  PubMed  Google Scholar 

  40. McKeating EG, Andrews PJ, Mascia L. Relationship of neuron specific enolase and protein S-100 concentrations in systemic and jugular venous serum to injury severity and outcome after traumatic brain injury. Acta Neurochir Suppl. 1998;71:117.

    PubMed  Google Scholar 

  41. Woertgen CH, Rothoerl RD, Holzschuh M, Metz C, Brawanski A. Comparison of serial S-100 and NSE serum measurements after severe head injury. Acta Neurochir (Wien). 1997;139:1161–5.

    Article  Google Scholar 

  42. Blyth BJ, Farahvar A, He H, Nayak A, Yang C, Shaw G, Bazarian JJ. Elevated serum ubiquitin carboxy-terminal hydrolase L1 is associated with abnormal blood–brain barrier function after traumatic brain injury. J Neurotrauma. 2011;28:2453–62.

    Article  PubMed  Google Scholar 

  43. Papa L, Akinyi L, Liu MC, Pineda JA, Tepas III JJ, Oli MW, Zheng W, Robinson G, Robicsek SA, Gabrielli A. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury*. Crit Care Med. 2010;38:138.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Setsuie R, Wada K. The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochem Int. 2007;51:105–11.

    Article  PubMed  Google Scholar 

  45. Siman R, Toraskar N, Dang A, McNeil E, McGarvey M, Plaum J, Maloney E, Grady MS. A panel of neuron-enriched proteins as markers for traumatic brain injury in humans. J Neurotrauma. 2009;26:1867–77.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Weiss ES, Wang KKW, Allen JG, Blue ME, Nwakanma LU, Liu MC, Lange MS, Berrong J, Wilson MA, Gott VL, Troncoso JC, Hayes RL, Johnston MV, Baumgartner WA. Alpha II-spectrin breakdown products serve as novel markers of brain injury severity in a canine model of hypothermic circulatory arrest. Ann Thorac Surg. 2009;88:543–50.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Mondello S, Robicsek SA, Gabrielli A, Brophy GM, Papa L, Tepas III J, Robertson C, Buki A, Scharf D, Jixiang M. αII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma. 2010;27:1203–13.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Brophy GM, Pineda JA, Papa L, Lewis SB, Valadka AB, Hannay HJ, Heaton SC, Demery JA, Liu MC, Tepas III JJ. αII-spectrin breakdown product cerebrospinal fluid exposure metrics suggest differences in cellular injury mechanisms after severe traumatic brain injury. J Neurotrauma. 2009;26:471–9.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Kobeissy FH, Ottens AK, Zhang Z, Liu MC, Denslow ND, Dave JR, Tortella FC, Hayes RL, Wang KK. Novel differential neuroproteomics analysis of traumatic brain injury in rats. Mol Cell Proteomics. 2006;5:1887–98.

    Article  PubMed  Google Scholar 

  50. Blyth BJ, Farhavar A, Gee C, Hawthorn B, He H, Nayak A, Stocklein V, Bazarian JJ. Validation of serum markers for blood-brain barrier disruption in traumatic brain injury. J Neurotrauma. 2009;26:1497–507.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Keel M, Trentz O. Pathophysiology of polytrauma. Injury. 2005;36:691–709.

    Article  PubMed  Google Scholar 

  52. Jeter CB, Hergenroeder GW, Hylin MJ, Redell JB, Moore AN, Dash PK. Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion. J Neurotrauma. 2013;30:657–70.

    Article  PubMed  Google Scholar 

  53. Pham N, Fazio V, Cucullo L, Teng Q, Biberthaler P, Bazarian JJ, Janigro D. Extracranial sources of S100B do not affect serum levels. PLoS One. 2010;5:e12691.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Liotta LA, Ferrari M, Petricoin E. Clinical proteomics: written in blood. Nature. 2003;425:905.

    Article  PubMed  Google Scholar 

  55. Chiappin S, Antonelli G, Gatti R, De Palo EF. Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta. 2007;383:30–40.

    Article  PubMed  Google Scholar 

  56. Navazesh M. Methods for collecting saliva. Ann N Y Acad Sci. 2006;694:72–7.

    Article  Google Scholar 

  57. Hu S, Wang J, Meijer J, Ieong S, Xie Y, Yu T, Zhou H, Henry S, Vissink A, Pijpe J. Salivary proteomic and genomic biomarkers for primary Sjögren’s syndrome. Arthritis Rheum. 2007;56:3588–600.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Baldini C, Giusti L, Bazzichi L, Lucacchini A, Bombardieri S. Proteomic analysis of the saliva: a clue for understanding primary from secondary Sjögren’s syndrome? Autoimmun Rev. 2008;7:185–91.

    Article  PubMed  Google Scholar 

  59. Higashi K, Yoshida M, Igarashi A, Ito K, Wada Y, Murakami S, Kobayashi D, Nakano M, Sohda M, Nakajima T, Narita I, Toida T, Kashiwagi K, Igarashi K. Intense correlation between protein-conjugated acrolein and primary Sjögren’s syndrome. Clin Chim Acta. 2010;411:359–63.

    Article  PubMed  Google Scholar 

  60. Righini CA, De Fraipont F, Timsit JF, Faure C, Brambilla E, Reyt E, Favrot MC. Tumor-specific methylation in saliva: a promising biomarker for early detection of head and neck cancer recurrence. Clin Cancer Res. 2007;13:1179–85.

    Article  PubMed  Google Scholar 

  61. Zhang L, Farrell JJ, Zhou H, Elashoff D, Akin D, Park NH, Chia D, Wong DT. Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer. Gastroenterology. 2010;138:949–57.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Lin L-L, Huang H-C, Juan H-F. Discovery of biomarkers for gastric cancer: a proteomics approach. J Proteomics. 2012;75:3081–97.

    Article  PubMed  Google Scholar 

  63. Martins-de-Souza D, Harris LW, Guest PC, Turck CW, Bahn S. The role of proteomics in depression research. Eur Arch Psychiatry Clin Neurosci. 2010;260:499–506.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Shi M, Caudle WM, Zhang J. Biomarker discovery in neurodegenerative diseases: a proteomic approach. Neurobiol Dis. 2009;35:157–64.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010;6:131–44.

    Article  PubMed  Google Scholar 

  66. Hu WT, Chen-Plotkin A, Arnold SE, Grossman M, Clark CM, Shaw LM, McCluskey L, Elman L, Karlawish J, Hurtig HI, Siderowf A, Lee VM-Y, Soares H, Trojanowski JQ. Biomarker discovery for Alzheimer’s disease, frontotemporal lobar degeneration, and Parkinson’s disease. Acta Neuropathol (Berl). 2010;120:385–99.

    Article  Google Scholar 

  67. King A, Sweeney F, Bodi I, Troakes C, Maekawa S, Al-Sarraj S. Abnormal TDP-43 expression is identified in the neocortex in cases of dementia pugilistica, but is mainly confined to the limbic system when identified in high and moderate stages of Alzheimer’s disease. Neuropathology. 2010;30:408–19.

    Article  PubMed  Google Scholar 

  68. Luchini A, Geho DH, Bishop B, Tran D, Xia C, Dufour RL, Jones CD, Espina V, Patanarut A, Zhou W, Ross MM, Tessitore A, Petricoin 3rd EF, Liotta LA. Smart hydrogel particles: biomarker harvesting: one-step affinity purification, size exclusion, and protection against degradation. Nano Lett. 2008;8:350–61.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Tamburro D, Fredolini C, Espina V, Douglas TA, Ranganathan A, Ilag L, Zhou W, Russo P, Espina BH, Muto G, Petricoin 3rd EF, Liotta LA, Luchini A. Multifunctional core-shell nanoparticles: discovery of previously invisible biomarkers. J Am Chem Soc. 2011;133:19178–88.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Longo C, Patanarut A, George T, Bishop B, Zhou W, Fredolini C, Ross MM, Espina V, Pellacani G, Petricoin 3rd EF, Liotta LA, Luchini A. Core-shell hydrogel particles harvest, concentrate and preserve labile low abundance biomarkers. PLoS One. 2009;4:e4763.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Halstead ME, Walter KD. Sport-related concussion in children and adolescents. Pediatrics. 2010;126:597–615.

    Article  PubMed  Google Scholar 

  72. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, Santini VE, Lee H-S, Kubilus CA, Stern RA. Chronic traumatic encephalopathy in athletes: progressive tauopathy following repetitive head injury. J Neuropathol Exp Neurol. 2009;68:709.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Gavett BE, Stern RA, McKee AC. Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin Sports Med. 2011;30:179. xi.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Saulle M, Greenwald BD. Chronic traumatic encephalopathy: a review. Rehabil Res Pract. 2012;2012:816069.

    Google Scholar 

Download references

Acknowledgments

Disclosures

Emanuel Petricoin is a coinventor on issued patents relating to the nanoparticle technology described in this chapter and can receive royalties from the licenses taken. He is an equity interest holder, consultant, and cofounder of Ceres Nanosciences Inc., which has licensed the nanoparticle technology described in this chapter.

Funding

This project was made possible in part by nonrestrictive funding from the Potomac Health Foundation and the generous support of the College of Science and the College of Education and Human Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane V. Caswell PhD, ATC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caswell, S.V., Cortes, N., Mitchell, K., Liotta, L., Petricoin, E.F. (2015). Development of Nanoparticle-Enabled Protein Biomarker Discovery: Implementation for Saliva-Based Traumatic Brain Injury Detection. In: Streckfus, C. (eds) Advances in Salivary Diagnostics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45399-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45399-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45398-8

  • Online ISBN: 978-3-662-45399-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics