Skip to main content

Salivary Diagnostics and the Oral Microbiome

  • Chapter
  • First Online:
Advances in Salivary Diagnostics

Abstract

Our oral cavity hosts an extraordinary variety of microorganisms. Recent work has started to look at the composition of the oral microbiome in both healthy and disease states. Various stages of caries, gingivitis, and periodontitis, plus novel work understanding the role of bacteria in other diseases/conditions and carcinogenesis, reveal that our oral microbiome has an intriguing link to our global health. Together, these studies have combined a number of techniques, including human oral microbe identification microarray (HOMIM) and high-throughput sequencing, to survey the oral flora composition. Microorganisms’ sensitivity to small changes in the environment including pH, nutrients and metabolites, oxygen and water levels, and host immune factors has been broadly studied. Ideally, the high sensitivity of oral microorganisms should forecast subtle changes in the health status and potentially serve as a biomarker for early detection of disease. Paired with other host saliva biomarkers, the oral microbiome presents a novel noninvasive diagnostic tool for monitoring changes in human physiology and a potential shift toward disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–9.

    PubMed Central  PubMed  Google Scholar 

  2. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–7.

    PubMed Central  PubMed  Google Scholar 

  3. Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, et al. The human microbiome project: a community resource for the healthy human microbiome. PLoS Biol. 2012;10(8):e1001377.

    PubMed Central  PubMed  Google Scholar 

  4. Grice EA, Segre JA. The human microbiome: our second genome. Annu Rev Genomics Hum Genet. 2012;13:151–70.

    PubMed Central  PubMed  Google Scholar 

  5. Baquero F, Nombela C. The microbiome as a human organ. Clin Microbiol Infect. 2012;18 Suppl 4:2–4.

    PubMed  Google Scholar 

  6. Saei AA, Barzegari A. The microbiome: the forgotten organ of the astronaut’s body–probiotics beyond terrestrial limits. Future Microbiol. 2012;7(9):1037–46.

    PubMed  Google Scholar 

  7. Possemiers S, Bolca S, Verstraete W, Heyerick A. The intestinal microbiome: a separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia. 2011;82(1):53–66.

    PubMed  Google Scholar 

  8. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688–93.

    PubMed Central  PubMed  Google Scholar 

  9. Kutikhin AG, Yuzhalin AE, Brusina EB, Kutikhin AG, Yuzhalin AE, Brusina EB. Infectious agents and cancer. Dordrecht: Springer; 2012.

    Google Scholar 

  10. Foxman B, Goldberg D, Murdock C, Xi C, Gilsdorf JR. Conceptualizing human microbiota: from multicelled organ to ecological community. Interdiscip Perspect Infect Dis. 2008;2008:613979.

    PubMed Central  PubMed  Google Scholar 

  11. Evans JM, Morris LS, Marchesi JR. The gut microbiome: the role of a virtual organ in the endocrinology of the host. J Endocrinol. 2013;218(3):R37–47.

    PubMed  Google Scholar 

  12. Zarco MF, Vess TJ, Ginsburg GS. The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis. 2012;18(2):109–20.

    PubMed  Google Scholar 

  13. JĂĽnemann S, Prior K, Szczepanowski R, Harks I, Ehmke B, Goesmann A, et al. Bacterial community shift in treated periodontitis patients revealed by ion torrent 16S rRNA gene amplicon sequencing. PLoS ONE. 2012;7(8):e41606.

    PubMed Central  PubMed  Google Scholar 

  14. Pflughoeft KJ, Versalovic J. Human microbiome in health and disease. Annu Rev Pathol Mech Dis. 2012;7(1):99–122.

    Google Scholar 

  15. Methé BA, Nelson KE, Pop M, Creasy HH, Giglio MG, Huttenhower C, et al. A framework for human microbiome research. Nature. 2012;486(7402):215–21.

    PubMed Central  Google Scholar 

  16. Zaura E, Keijser BJF, Huse SM, Crielaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009;9:259.

    PubMed Central  PubMed  Google Scholar 

  17. Bowden GHW, Hamilton IR. Survival of oral bacteria. Crit Rev Oral Biol Med. 1998;9(1):54–85.

    PubMed  Google Scholar 

  18. Donoghue HD, Perrons CJ. Effect of nutrients on defined bacterial plaques and streptococcus mutans C67-1 implantation in a model mouth. Caries Res. 1991;25(2):108–15.

    PubMed  Google Scholar 

  19. Scannapieco FA. Saliva-bacterium interactions in oral microbial ecology. Crit Rev Oral Biol Med. 1994;5(3–4):203–48.

    PubMed  Google Scholar 

  20. Gibbons RJ, Houte JV. Bacterial adherence in oral microbial ecology. Annu Rev Microbiol. 1975;29(1):19–42.

    PubMed  Google Scholar 

  21. Torlakovic L, Klepac-Ceraj V, Ogaard B, Cotton SL, Paster BJ, Olsen I. Microbial community succession on developing lesions on human enamel. J Oral Microbiol. 2012;4:16125. doi:10.3402/jom.v4i0.16125.

  22. Docktor MJ, Paster BJ, Abramowicz S, Ingram J, Wang YE, Correll M, et al. Alterations in diversity of the oral microbiome in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2012;18(5):935–42.

    PubMed Central  PubMed  Google Scholar 

  23. Colombo APV, Boches SK, Cotton SL, Goodson JM, Kent R, Haffajee AD, et al. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol. 2009;80(9):1421–32.

    PubMed Central  PubMed  Google Scholar 

  24. Belstrøm D, Fiehn N, Nielsen CH, Kirkby N, Twetman S, Klepac-Ceraj V, et al. Differences in bacterial saliva profile between periodontitis patients and a control cohort. J Clin Periodontol. 2014;41(2):104–12.

    PubMed  Google Scholar 

  25. Colombo APV, Bennet S, Cotton SL, Goodson JM, Kent R, Haffajee AD, et al. Impact of periodontal therapy on the subgingival microbiota of severe periodontitis: comparison between good responders and individuals with refractory periodontitis using the human oral microbe identification microarray. J Periodontol. 2012;83(10):1279–87.

    PubMed Central  PubMed  Google Scholar 

  26. Albandar JM, Khattab R, Monem F, Barbuto SM, Paster BJ. The subgingival microbiota of Papillon-Lefèvre syndrome. J Periodontol. 2012;83(7):902–8.

    PubMed  Google Scholar 

  27. Kinney JS, Morelli T, Braun T, Ramseier CA, Herr AE, Sugai JV, et al. Saliva/pathogen biomarker signatures and periodontal disease progression. J Dent Res. 2011;90(6):752–8.

    PubMed Central  PubMed  Google Scholar 

  28. Al-Tarawneh SK, Border MB, Dibble CF, Bencharit S. Defining salivary biomarkers using mass spectrometry-based proteomics: a systematic review. OMICS. 2011;15(6):353–61.

    PubMed Central  PubMed  Google Scholar 

  29. Siqueira WL, Dawes C. The salivary proteome: challenges and perspectives. Proteomics Clin Appl. 2011;5(11–12):575–9.

    PubMed  Google Scholar 

  30. Giannobile WV. Salivary diagnostics for periodontal diseases. J Am Dent Assoc. 2012;143(10 Suppl):6S–11.

    PubMed  Google Scholar 

  31. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721–32.

    PubMed Central  PubMed  Google Scholar 

  32. Keijser BJF, Zaura E, Huse SM, van der Vossen JMBM, Schuren FHJ, Montijn RC, et al. Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res. 2008;87(11):1016–20.

    PubMed  Google Scholar 

  33. Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, Osterås M, et al. Metagenomic study of the oral microbiota by illumina high-throughput sequencing. J Microbiol Methods. 2009;79(3):266–71.

    PubMed Central  PubMed  Google Scholar 

  34. Nasidze I, Li J, Quinque D, Tang K, Stoneking M. Global diversity in the human salivary microbiome. Genome Res. 2009;19:636–43.

    PubMed Central  PubMed  Google Scholar 

  35. Nasidze I, Quinque D, Li J, Li M, Tang K, Stoneking M. Comparative analysis of human saliva microbiome diversity by barcoded pyrosequencing and cloning approaches. Anal Biochem. 2009;391(1):64–8.

    PubMed  Google Scholar 

  36. Lazarevic V, Whiteson K, Hernandez D, François P, Schrenzel J. Study of inter- and intra-individual variations in the salivary microbiota. BMC Genomics. 2010;11:523.

    PubMed Central  PubMed  Google Scholar 

  37. Lazarevic V, Whiteson K, GaĂŻa N, Gizard Y, Hernandez D, Farinelli L, et al. Analysis of the salivary microbiome using culture-independent techniques. J Clin Bioinforma. 2012;2:4.

    PubMed Central  PubMed  Google Scholar 

  38. Simón-Soro A, Tomás I, Cabrera-Rubio R, Catalan MD, Nyvad B, Mira A. Microbial geography of the oral cavity. J Dent Res. 2013;92(7):616–21.

    PubMed  Google Scholar 

  39. Zaura E. Next-generation sequencing approaches to understanding the oral microbiome. Adv Dent Res. 2012;24(2):81–5.

    PubMed  Google Scholar 

  40. Bik EM, Long CD, Armitage GC, Loomer P, Emerson J, Mongodin EF, et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010;4(8):962–74.

    PubMed Central  PubMed  Google Scholar 

  41. Rosan B, Lamont RJ. Dental plaque formation. Microbes Infect. 2000;2(13):1599–607.

    PubMed  Google Scholar 

  42. Bimstein E, Ram D, Naor R, Sela MN. The composition of subgingival microflora in two groups of children with and without primary dentition alveolar bone loss. Pediatr Dent. 1996;18(1):42–7.

    PubMed  Google Scholar 

  43. Africa CW, Parker JR, Reddy J. Darkfield microscopy of the flora of subgingival plaque of patients with severe periodontitis and its use in therapeutic assessment. J Dent Assoc S Afr. 1985;40(1):5–9.

    PubMed  Google Scholar 

  44. Addy M, Newman H, Langeroudi M, Gho JG. Dark-field microscopy of the microflora of plaque. Br Dent J. 1983;155(8):269–73.

    PubMed  Google Scholar 

  45. Pushalkar S, Mane SP, Ji X, Li Y, Evans C, Crasta OR, et al. Microbial diversity in saliva of oral squamous cell carcinoma. FEMS Immunol Med Microbiol. 2011;61(3):269–77.

    PubMed Central  PubMed  Google Scholar 

  46. Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008;46(4):1407–17.

    PubMed Central  PubMed  Google Scholar 

  47. Mager D, Haffajee A, Devlin P, Norris C, Posner M, Goodson J. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med. 2005;3(1):27.

    PubMed Central  PubMed  Google Scholar 

  48. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 2008;6(10):776–88.

    PubMed Central  PubMed  Google Scholar 

  49. Stahringer SS, Clemente JC, Corley RP, Hewitt J, Knights D, Walters WA, et al. Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Res. 2012;22(11):2146–52.

    PubMed Central  PubMed  Google Scholar 

  50. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.

    Google Scholar 

  51. Kolenbrander PE. Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol. 2000;54:413–37.

    PubMed  Google Scholar 

  52. Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai C, et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes the virulence of plaque-biofilms in vivo. Infect Immun. 2014;82:1968–81.

    PubMed Central  PubMed  Google Scholar 

  53. Wessel SW, Chen Y, Maitra A, van den Heuvel ER, Slomp AM, Busscher HJ, et al. Adhesion forces and composition of planktonic and adhering oral microbiomes. J Dent Res. 2014;93(1):84–8.

    PubMed Central  PubMed  Google Scholar 

  54. Foster JS, Kolenbrander PE. Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol. 2004;70(7):4340–8.

    PubMed Central  PubMed  Google Scholar 

  55. Biyikoğlu B, Ricker A, Diaz PI. Strain-specific colonization patterns and serum modulation of multi-species oral biofilm development. Anaerobe. 2012;18(4):459–70.

    PubMed Central  PubMed  Google Scholar 

  56. Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet. 2007;369(9555):51–9.

    PubMed  Google Scholar 

  57. Kolenbrander PE. Multispecies communities: interspecies interactions influence growth on saliva as sole nutritional source. Int J Oral Sci. 2011;3(2):49–54.

    PubMed Central  PubMed  Google Scholar 

  58. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ. Communication among oral bacteria. Microbiol Mol Biol Rev. 2002;66(3):486–505, table of contents.

    PubMed Central  PubMed  Google Scholar 

  59. Periasamy S, Kolenbrander PE. Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. J Bacteriol. 2009;191(22):6804–11.

    PubMed Central  PubMed  Google Scholar 

  60. Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent. 2001;85(2):162–9.

    PubMed  Google Scholar 

  61. Culp DJ, Robinson B, Parkkila S, Pan P, Cash MN, Truong HN, et al. Oral colonization by Streptococcus mutans and caries development is reduced upon deletion of carbonic anhydrase VI expression in saliva. Biochim Biophys Acta. 2011;1812(12):1567–76.

    PubMed Central  PubMed  Google Scholar 

  62. Melvin JE. Saliva and dental diseases. Curr Opin Dent. 1991;1(6):795–801.

    PubMed  Google Scholar 

  63. De Jong MH, Van der Hoeven JS. The growth of oral bacteria on saliva. J Dent Res. 1987;66(2):498–505.

    PubMed  Google Scholar 

  64. Buzalaf MAR, Hannas AR, Kato MT. Saliva and dental erosion. J Appl Oral Sci. 2012;20(5):493–502.

    PubMed Central  PubMed  Google Scholar 

  65. Liljemark WF, Bloomquist CG, Coulter MC, Fenner LJ, Skopek RJ, Schachtele CF. Utilization of a continuous streptococcal surface to measure interbacterial adherence in vitro and in vivo. J Dent Res. 1988;67(12):1455–60.

    PubMed  Google Scholar 

  66. Skopek RJ, Liljemark WF. The influence of saliva on interbacterial adherence. Oral Microbiol Immunol. 1994;9(1):19–24.

    PubMed  Google Scholar 

  67. Dibdin GH, Dawes C. A mathematical model of the influence of salivary urea on the pH of fasted dental plaque and on the changes occurring during a cariogenic challenge. Caries Res. 1998;32(1):70–4.

    PubMed  Google Scholar 

  68. Dawes C, Dibdin GH. Salivary concentrations of urea released from a chewing gum containing urea and how these affect the urea content of gel-stabilized plaques and their pH after exposure to sucrose. Caries Res. 2001;35(5):344–53.

    PubMed  Google Scholar 

  69. Bardow A, Moe D, Nyvad B, Nauntofte B. The buffer capacity and buffer systems of human whole saliva measured without loss of CO2. Arch Oral Biol. 2000;45(1):1–12.

    PubMed  Google Scholar 

  70. Ship JA, Fox PC, Baum BJ. How much saliva is enough? “Normal” function defined. J Am Dent Assoc. 1991;122(3):63–9.

    PubMed  Google Scholar 

  71. Javed F, Utreja A, Bello Correa FO, Al-Askar M, Hudieb M, Qayyum F, et al. Oral health status in children with acute lymphoblastic leukemia. Crit Rev Oncol Hematol. 2012;83(3):303–9.

    PubMed  Google Scholar 

  72. Areias C, Sampaio-Maia B, Pereira MDL, Azevedo A, Melo P, Andrade C, et al. Reduced salivary flow and colonization by mutans streptococci in children with Down syndrome. Clin (Sao Paulo). 2012;67(9):1007–11.

    Google Scholar 

  73. Bardow A, Nyvad B, Nauntofte B. Relationships between medication intake, complaints of dry mouth, salivary flow rate and composition, and the rate of tooth demineralization in situ. Arch Oral Biol. 2001;46(5):413–23.

    PubMed  Google Scholar 

  74. Navazesh M, Mulligan RA, Kipnis V, Denny PA, Denny PC. Comparison of whole saliva flow rates and mucin concentrations in healthy Caucasian young and aged adults. J Dent Res. 1992;71(6):1275–8.

    PubMed  Google Scholar 

  75. Imanguli MM, Atkinson JC, Harvey KE, Hoehn GT, Ryu OH, Wu T, et al. Changes in salivary proteome following allogeneic hematopoietic stem cell transplantation. Exp Hematol. 2007;35(2):184–92.

    PubMed Central  PubMed  Google Scholar 

  76. Khalili S, Faustman DL, Liu Y, Sumita Y, Blank D, Peterson A, et al. Treatment for salivary gland hypofunction at both initial and advanced stages of Sjögren-like disease: a comparative study of bone marrow therapy versus spleen cell therapy with a 1-year monitoring period. Cytotherapy. 2014;16(3):412–23.

    PubMed  Google Scholar 

  77. Proctor GB, Carpenter GH. Regulation of salivary gland function by autonomic nerves. Auton Neurosci. 2007;133(1):3–18.

    PubMed  Google Scholar 

  78. González S, Sung H, Sepúlveda D, González M, Molina C. Oral manifestations and their treatment in Sjögren’s syndrome. Oral Dis. 2014;20(2):153–61.

    PubMed  Google Scholar 

  79. Jensdottir T, Buchwald C, Nauntofte B, Hansen HS, Bardow A. Saliva in relation to dental erosion before and after radiotherapy. Acta Odontol Scand. 2013;71(3–4):1008–13.

    PubMed  Google Scholar 

  80. MacFarlane TW, Mason DK. Changes in the oral flora in Sjögren’s syndrome. J Clin Pathol. 1974;27(5):416–9.

    PubMed Central  PubMed  Google Scholar 

  81. Almståhl A, Wikström M, Kroneld U. Microflora in oral ecosystems in primary Sjögren’s syndrome. J Rheumatol. 2001;28(5):1007–13.

    PubMed  Google Scholar 

  82. Psoter WJ, Spielman AL, Gebrian B, St Jean R, Katz RV. Effect of childhood malnutrition on salivary flow and pH. Arch Oral Biol. 2008;53(3):231–7.

    PubMed Central  PubMed  Google Scholar 

  83. Bradshaw DJ, Lynch RJM. Diet and the microbial aetiology of dental caries: new paradigms. Int Dent J. 2013;63 Suppl 2:64–72.

    PubMed  Google Scholar 

  84. Witbracht MG, Van Loan M, Adams SH, Keim NL, Laugero KD. Dairy food consumption and meal-induced cortisol response interacted to influence weight loss in overweight women undergoing a 12-week, meal-controlled, weight loss intervention. J Nutr. 2013;143(1):46–52.

    PubMed Central  PubMed  Google Scholar 

  85. Sekine S, Kataoka K, Tanaka M, Nagata H, Kawakami T, Akaji K, et al. Active domains of salivary statherin on apatitic surfaces for binding to Fusobacterium nucleatum cells. Microbiology (Reading, Engl). 2004;150(Pt 7):2373–9.

    Google Scholar 

  86. Kolenbrander PE, Palmer RJ, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. 2010;8(7):471–80.

    PubMed  Google Scholar 

  87. Eliasson L, Carlén A. An update on minor salivary gland secretions. Eur J Oral Sci. 2010;118(5):435–42.

    PubMed  Google Scholar 

  88. Tabak LA. In defense of the oral cavity: structure, biosynthesis, and function of salivary mucins. Annu Rev Physiol. 1995;57:547–64.

    PubMed  Google Scholar 

  89. Bolscher J, Veerman E, Van Nieuw Amerongen A, Tulp A, Verwoerd D. Distinct populations of high-M(r) mucins secreted by different human salivary glands discriminated by density-gradient electrophoresis. Biochem J. 1995;309(Pt 3):801–6.

    PubMed Central  PubMed  Google Scholar 

  90. Carlson DM. Salivary proline-rich proteins: biochemistry, molecular biology, and regulation of expression. Crit Rev Oral Biol Med. 1993;4(3–4):495–502.

    PubMed  Google Scholar 

  91. Li T, Khah MK, Slavnic S, Johansson I, Strömberg N. Different type 1 fimbrial genes and tropisms of commensal and potentially pathogenic Actinomyces spp. with different salivary acidic proline-rich protein and statherin ligand specificities. Infect Immun. 2001;69(12):7224–33.

    PubMed Central  PubMed  Google Scholar 

  92. Douglas CW. Bacterial-protein interactions in the oral cavity. Adv Dent Res. 1994;8(2):254–62.

    PubMed  Google Scholar 

  93. Offner GD, Troxler RF. Heterogeneity of high-molecular-weight human salivary mucins. Adv Dent Res. 2000;14(1):69–75.

    PubMed  Google Scholar 

  94. Nakamura T, Takada N, Tonozuka T, Sakano Y, Oguma K, Nishikawa A. Binding properties of Clostridium botulinum type C progenitor toxin to mucins. Biochim Biophys Acta. 2007;1770(4):551–5.

    PubMed  Google Scholar 

  95. Strombeck DR, Harrold D. Binding of cholera toxin to mucins and inhibition by gastric mucin. Infect Immun. 1974;10(6):1266–72.

    PubMed Central  PubMed  Google Scholar 

  96. Proctor GB, Carpenter GH. Chewing stimulates secretion of human salivary secretory immunoglobulin A. J Dent Res. 2001;80(3):909–13.

    PubMed  Google Scholar 

  97. Zee KY, Samaranayake LP, Attström R. Salivary immunoglobulin A levels in rapid and slow plaque formers: a pilot study. Microbios. 2001;106 Suppl 2:81–7.

    PubMed  Google Scholar 

  98. Marcotte H, Lavoie MC. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol Mol Biol Rev. 1998;62(1):71–109.

    PubMed Central  PubMed  Google Scholar 

  99. Brandtzaeg P, Berstad AE, Farstad IN, Haraldsen G, Helgeland L, Jahnsen FL, et al. Mucosal immunity–a major adaptive defence mechanism. Behring Inst Mitt. 1997;98:1–23.

    PubMed  Google Scholar 

  100. Loimaranta V, Tenovuo J, Virtanen S, Marnila P, Syväoja EL, Tupasela T, et al. Generation of bovine immune colostrum against Streptococcus mutans and Streptococcus sobrinus and its effect on glucose uptake and extracellular polysaccharide formation by mutans streptococci. Vaccine. 1997;15(11):1261–8.

    PubMed  Google Scholar 

  101. Tenovuo JO. Human saliva: clinical chemistry and microbiology. Boca Raton: CRC Press, Inc.; 1989.

    Google Scholar 

  102. Tenovuo J. Antimicrobial function of human saliva – how important is it for oral health? Acta Odontol Scand. 1998;56(5):250–6.

    PubMed  Google Scholar 

  103. Millar MR, Inglis T. Influence of lysozyme on aggregation of Staphylococcus aureus. J Clin Microbiol. 1987;25(9):1587–90.

    PubMed Central  PubMed  Google Scholar 

  104. Battino M, Ferreiro MS, Gallardo I, Newman HN, Bullon P. The antioxidant capacity of saliva. J Clin Periodontol. 2002;29(3):189–94.

    PubMed  Google Scholar 

  105. Noble RE. Salivary alpha-amylase and lysozyme levels: a non-invasive technique for measuring parotid vs submandibular/sublingual gland activity. J Oral Sci. 2000;42(2):83–6.

    PubMed  Google Scholar 

  106. Gregory MR, Gregory WW, Bruns DE, Zakowski JJ. Amylase inhibits Neisseria gonorrhoeae by degrading starch in the growth medium. J Clin Microbiol. 1983;18(6):1366–9.

    PubMed Central  PubMed  Google Scholar 

  107. Berger U. Inhibition of Neisseria meningitidis by alpha-amylase. Zentralbl Bakteriol Mikrobiol Hyg A. 1984;258(2–3):156–8.

    PubMed  Google Scholar 

  108. Mellersh A, Clark A, Hafiz S. Inhibition of Neisseria gonorrhoeae by normal human saliva. Br J Venereol Dis. 1979;55(1):20–3.

    Google Scholar 

  109. Bortner CA, Miller RD, Arnold RR. Effects of alpha-amylase on in vitro growth of Legionella pneumophila. Infect Immun. 1983;41(1):44–9.

    PubMed Central  PubMed  Google Scholar 

  110. Veerman EC, van den Keybus PA, Vissink A, Nieuw Amerongen AV. Human glandular salivas: their separate collection and analysis. Eur J Oral Sci. 1996;104(4 (Pt 1)):346–52.

    PubMed  Google Scholar 

  111. Van der Hoeven JS, De Jong MH, Van Nieuw Amerongen A. Growth of oral microflora on saliva from different glands. Microb Ecol Health Dis. 1989;2:171–80.

    Google Scholar 

  112. Lingström P, Moynihan P. Nutrition, saliva, and oral health. Nutrition. 2003;19(6):567–9.

    PubMed  Google Scholar 

  113. Mathews SA, Kurien BT, Scofield RH. Oral manifestations of Sjögren’s syndrome. J Dent Res. 2008;87(4):308–18.

    PubMed  Google Scholar 

  114. Eliasson L, Carlén A, Almståhl A, Wikström M, Lingström P. Dental plaque pH and micro-organisms during hyposalivation. J Dent Res. 2006;85(4):334–8.

    PubMed  Google Scholar 

  115. Palmer RJ, Gordon SM, Cisar JO, Kolenbrander PE. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J Bacteriol. 2003;185(11):3400–9.

    PubMed  Google Scholar 

  116. Palmer RJ, Kazmerzak K, Hansen MC, Kolenbrander PE. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect Immun. 2001;69(9):5794–804.

    PubMed Central  PubMed  Google Scholar 

  117. Lancy P, Dirienzo JM, Appelbaum B, Rosan B, Holt SC. Corncob formation between Fusobacterium nucleatum and Streptococcus sanguis. Infect Immun. 1983;40(1):303–9.

    PubMed Central  PubMed  Google Scholar 

  118. Weiss EI, Kolenbrander PE, London J, Hand AR, Andersen RN. Fimbria-associated proteins of Bacteroides loescheii PK1295 mediate intergeneric coaggregations. J Bacteriol. 1987;169(9):4215–22.

    PubMed Central  PubMed  Google Scholar 

  119. Weiss EI, London J, Kolenbrander PE, Kagermeier AS, Andersen RN. Characterization of lectinlike surface components on Capnocytophaga ochracea ATCC 33596 that mediate coaggregation with gram-positive oral bacteria. Infect Immun. 1987;55(5):1198–202.

    PubMed Central  PubMed  Google Scholar 

  120. Diaz PI, Chalmers NI, Rickard AH, Kong C, Milburn CL, Palmer RJ, et al. Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol. 2006;72(4):2837–48.

    PubMed Central  PubMed  Google Scholar 

  121. Staat RH, Gawronski TH, Schachtele CF. Detection and preliminary studies on dextranase-producing microorganisms from human dental plaque. Infect Immun. 1973;8(6):1009–16.

    PubMed Central  PubMed  Google Scholar 

  122. Koo H, Falsetta ML, Klein MI. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res. 2013;92(12):1065–73.

    PubMed Central  PubMed  Google Scholar 

  123. Kolenbrander PE, Andersen RN, Moore LV. Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface. Appl Environ Microbiol. 1990;56:3890–4.

    PubMed Central  PubMed  Google Scholar 

  124. Rosen G, Nisimov I, Helcer M, Sela MN. Actinobacillus actinomycetemcomitans serotype b lipopolysaccharide mediates coaggregation with Fusobacterium nucleatum. Infect Immun. 2003;71(6):3652–6.

    PubMed Central  PubMed  Google Scholar 

  125. Hooper SJ, Crean SJ, Fardy MJ, Lewis MAO, Spratt DA, Wade WG, et al. A molecular analysis of the bacteria present within oral squamous cell carcinoma. J Med Microbiol. 2007;56(12):1651–9.

    PubMed  Google Scholar 

  126. Hooper SJ, Crean SJ, Lewis MAO, Spratt DA, Wade WG, Wilson MJ. Viable bacteria present within oral squamous cell carcinoma tissue. J Clin Microbiol. 2006;44(5):1719–25.

    PubMed Central  PubMed  Google Scholar 

  127. Shiga K, Tateda M, Saijo S, Hori T, Sato I, Tateno H, et al. Presence of Streptococcus infection in extra-oropharyngeal head and neck squamous cell carcinoma and its implication in carcinogenesis. Oncol Rep. 2001;8(2):245–8.

    PubMed  Google Scholar 

  128. Narikiyo M, Tanabe C, Yamada Y, Igaki H, Tachimori Y, Kato H, et al. Frequent and preferential infection of Treponema denticola, Streptococcus mitis, and Streptococcus anginosus in esophageal cancers. Cancer Sci. 2004;95(7):569–74.

    PubMed  Google Scholar 

  129. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14(2):207–15.

    PubMed Central  PubMed  Google Scholar 

  130. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206.

    PubMed Central  PubMed  Google Scholar 

  131. Salazar CR, Sun J, Li Y, Francois F, Corby P, Perez-Perez G, et al. Association between selected oral pathogens and gastric precancerous lesions. PLoS ONE. 2013;8(1):e51604.

    PubMed Central  PubMed  Google Scholar 

  132. Salazar CR, Francois F, Li Y, Corby P, Hays R, Leung C, et al. Association between oral health and gastric precancerous lesions. Carcinogenesis. 2012;33(2):399–403.

    PubMed Central  PubMed  Google Scholar 

  133. Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012;61(4):582–8.

    PubMed Central  PubMed  Google Scholar 

  134. Okada M, Kawamura M, Oda Y, Yasuda R, Kojima T, Kurihara H. Caries prevalence associated with Streptococcus mutans and Streptococcus sobrinus in Japanese schoolchildren. Int J Paediatr Dent. 2012;22(5):342–8.

    PubMed  Google Scholar 

  135. Sánchez-Acedo M, Montiel-Company J, Dasí-Fernández F, Almerich-Silla J. Streptococcus mutans and Streptococcus sobrinus detection by polymerase chain reaction and their relation to dental caries in 12 and 15 year-old schoolchildren in Valencia (Spain). Med Oral Patol Oral Cir Bucal. 2013;18(6):e839–45.

    PubMed Central  PubMed  Google Scholar 

  136. Palmer EA, Nielsen T, Peirano P, Nguyen AT, Vo A, Nguyen A, et al. Children with severe early childhood caries: pilot study examining mutans streptococci genotypic strains after full-mouth caries restorative therapy. Pediatr Dent. 2012;34(2):e1–10.

    PubMed Central  PubMed  Google Scholar 

  137. Crossner C. Salivary lactobacillus counts in the prediction of caries activity. Community Dent Oral Epidemiol. 1981;9(4):182–90.

    PubMed  Google Scholar 

  138. Wolff D, Frese C, Maier-Kraus T, Krueger T, Wolff B. Bacterial biofilm composition in caries and caries-free subjects. Caries Res. 2013;47(1):69–77.

    PubMed  Google Scholar 

  139. Roeters FJM, Van der Hoeven JS, Burgersdijk RCW, Schaeken MJM. Lactobacilli, mutans streptococci and dental caries: a longitudinal study in 2-year-old children up to the age of 5 years. Caries Res. 1995;29(4):272–9.

    PubMed  Google Scholar 

  140. Stecksén-Blicks C. Salivary counts of lactobacilli and Streptococcus mutans in caries prediction. Eur J Oral Sci. 1985;93(3):204–12.

    Google Scholar 

  141. Okada M, Soda Y, Hayashi F, Doi T, Suzuki J, Miura K, et al. PCR detection of Streptococcus mutans and S. sobrinus in dental plaque samples from Japanese pre-school children. J Med Microbiol. 2002;51(5):443–7.

    PubMed  Google Scholar 

  142. Köhler B, Persson M. Salivary levels of mutans streptococci and lactobacilli in dentate 80- and 85-year-old Swedish men and women. Community Dent Oral Epidemiol. 1991;19(6):352–6.

    PubMed  Google Scholar 

  143. Petersson GH, Isberg P, Twetman S. Caries risk profiles in schoolchildren over 2 years assessed by Cariogram. Int J Paediatr Dent. 2010;20(5):341–6.

    PubMed  Google Scholar 

  144. Fure S. Ten-year cross-sectional and incidence study of coronal and root caries and some related factors in elderly Swedish individuals. Gerodontology. 2004;21(3):130–40.

    PubMed  Google Scholar 

  145. Belstrøm D, Fiehn N, Nielsen CH, Holmstrup P, Kirkby N, Klepac-Ceraj V, et al. Altered bacterial profiles in saliva from adults with caries lesions: a case-cohort study. Caries Res. 2014;48(5):368–75.

    PubMed  Google Scholar 

  146. Ashimoto A, Chen C, Bakker I, Slots J. Polymerase chain reaction detection of 8 putative periodontal pathogens in subgingival plaque of gingivitis and advanced periodontitis lesions. Oral Microbiol Immunol. 1996;11(4):266–73.

    PubMed  Google Scholar 

  147. Van Winkelhoff AJ, Loos BG, van der Reijden WA, Van der Velden U. Porphyromonas gingivalis, bacteroides forsythus and other putative periodontal pathogens in subjects with and without periodontal destruction. J Clin Periodontol. 2002;29(11):1023–8.

    PubMed  Google Scholar 

  148. Slots J, Slots H. Bacterial and viral pathogens in saliva: disease relationship and infectious risk. Periodontology 2000. 2011;55(1):48–69.

    PubMed  Google Scholar 

  149. Saygun I, Kubar A, Sahin S, Sener K, Slots J. Quantitative analysis of association between herpesviruses and bacterial pathogens in periodontitis. J Periodont Res. 2008;43(3):352–9.

    PubMed  Google Scholar 

  150. Imbronito AV, Okuda OS, de Freitas Maria N, Moreira Lotufo RF, Nunes FD. Detection of herpesviruses and periodontal pathogens in subgingival plaque of patients with chronic periodontitis, generalized aggressive periodontitis, or gingivitis. J Periodontol. 2008;79(12):2313–21.

    PubMed  Google Scholar 

  151. Ito T, Yasuda M, Kaneko H, Sasaki H, Kato T, Yajima Y. Clinical evaluation of salivary periodontal pathogen levels by real-time polymerase chain reaction in patients before dental implant treatment. Clin Oral Implants Res. 2014;25:977–82.

    PubMed Central  PubMed  Google Scholar 

  152. Ebersole JL, Holt SC, Hansard R, Novak MJ. Microbiologic and immunologic characteristics of periodontal disease in Hispanic americans with type 2 diabetes. J Periodontol. 2008;79(4):637–46.

    PubMed  Google Scholar 

  153. Lalla E, Cheng B, Lal S, Tucker S, Greenberg E, Goland R, et al. Periodontal changes in children and adolescents with diabetes: a case-control study. Diabetes Care. 2006;29(2):295–9.

    PubMed  Google Scholar 

  154. Kuo L, Polson AM, Kang T. Associations between periodontal diseases and systemic diseases: a review of the inter-relationships and interactions with diabetes, respiratory diseases, cardiovascular diseases and osteoporosis. Public Health. 2008;122(4):417–33.

    PubMed  Google Scholar 

  155. Zambon JJ, Reynolds H, Fisher JG, Shlossman M, Dunford R, Genco RJ. Microbiological and immunological studies of adult periodontitis in patients with noninsulin-dependent diabetes mellitus. J Periodontol. 1988;59(1):23–31.

    PubMed  Google Scholar 

  156. Mashimo PA, Yamamoto Y, Slots J, Park BH, Genco RJ. The periodontal microflora of juvenile diabetics: culture, immunofluorescence, and serum antibody studies. J Periodontol. 1983;54(7):420–30.

    PubMed  Google Scholar 

  157. Casarin RCV, Barbagallo A, Meulman T, Santos VR, Sallum EA, Nociti FH, et al. Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic periodontitis. J Periodontal Res. 2013;48(1):30–6.

    PubMed  Google Scholar 

  158. Said HS, Suda W, Nakagome S, Chinen H, Oshima K, Kim S, et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res. 2014;21(1):15–25.

    PubMed Central  PubMed  Google Scholar 

  159. Grössner-Schreiber B, Fetter T, Hedderich J, Kocher T, Schreiber S, Jepsen S. Prevalence of dental caries and periodontal disease in patients with inflammatory bowel disease: a case-control study. J Clin Periodontol. 2006;33(7):478–84.

    PubMed  Google Scholar 

  160. Leung KCM, McMillan AS, Cheung BPK, Leung WK. Sjögren’s syndrome sufferers have increased oral yeast levels despite regular dental care. Oral Dis. 2008;14(2):163–73.

    PubMed  Google Scholar 

  161. Leung KCM, Leung WK, McMillan AS. Supra-gingival microbiota in Sjögren’s syndrome. Clin Oral Investig. 2007;11(4):415–23.

    PubMed  Google Scholar 

  162. Ergun S. Oral Aspects of Sjogren’s Syndrome. In: Harrison A, editor. Insights and perspectives in rheumatology. InTech; 2012. p. 149–71.

    Google Scholar 

  163. Abraham CM, al-Hashimi I, Haghighat N. Evaluation of the levels of oral Candida in patients with Sjögren’s syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;86(1):65–8.

    PubMed  Google Scholar 

  164. Thomas DM, Mirowski GW. Nutrition and oral mucosal diseases. Clin Dermatol. 2010;28(4):426–31.

    PubMed  Google Scholar 

  165. Timmerman MF, Abbas F, Loos BG, Van der Weijden GA, Van Winkelhoff AJ, Winkel EG, et al. Java project on periodontal diseases: the relationship between vitamin C and the severity of periodontitis. J Clin Periodontol. 2007;34(4):299–304.

    PubMed  Google Scholar 

  166. Kreth J, Merritt J, Qi F. Bacterial and host interactions of oral streptococci. DNA Cell Biol. 2009;28(8):397–403.

    PubMed Central  PubMed  Google Scholar 

  167. Kalfas S, Andersson M, Edwardsson S, Forsgren A, Naidu AS. Human lactoferrin binding to Porphyromonas gingivalis, Prevotella intermedia and Prevotella melaninogenica. Oral Microbiol Immunol. 1991;6(6):350–5.

    PubMed  Google Scholar 

  168. Vestman NR, Timby N, Holgerson PL, Kressirer CA, Claesson R, Domellöf M, et al. Characterization and in vitro properties of oral lactobacilli in breastfed infants. BMC Microbiol. 2013;13:193.

    PubMed  Google Scholar 

  169. Miyakawa H, Nakazawa F. Role of asaccharolytic anaerobic gram-positive rods on periodontitis. J Oral Biosci. 2010;52(3):240–4.

    Google Scholar 

  170. Amerongen AVN, Veerman ECI. Saliva–the defender of the oral cavity. Oral Dis. 2002;8(1):12–22.

    PubMed  Google Scholar 

  171. Ghasempour M, Rajabnia R, Irannejad A, Hamzeh M, Ferdosi E, Bagheri M. Frequency, biofilm formation and acid susceptibility of streptococcus mutans and streptococcus sobrinus in saliva of preschool children with different levels of caries activity. Dent Res J (Isfahan). 2013;10(4):440–5.

    Google Scholar 

  172. Fozo EM, Kajfasz JK, Quivey RG. Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiol Lett. 2004;238(2):291–5.

    PubMed  Google Scholar 

  173. Hamada S, Ooshima T. Production and properties of bacteriocins (mutacins) from streptococcus mutans. Arch Oral Biol. 1975;20(10):641–8. IN5.

    PubMed  Google Scholar 

  174. Holmberg K, Hallander HO. Production of bactericidal concentrations of hydrogen peroxide by Streptococcus sanguis. Arch Oral Biol. 1973;18(3):423–34. IN7.

    PubMed  Google Scholar 

  175. Geiger T, Kästle B, Gratani FL, Goerke C, Wolz C. Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J Bacteriol. 2014;196(4):894–902.

    PubMed Central  PubMed  Google Scholar 

  176. Santiago B, Marek M, Faustoferri RC, Quivey RG. The Streptococcus mutans aminotransferase encoded by ilvE is regulated by CodY and CcpA. J Bacteriol. 2013;195(16):3552–62.

    PubMed Central  PubMed  Google Scholar 

  177. Marsh PD. Dental plaque as a biofilm and a microbial community – implications for health and disease. BMC Oral Health. 2006;6 Suppl 1:S14.

    PubMed Central  PubMed  Google Scholar 

  178. Brown LJ, Löe H. Prevalence, extent, severity and progression of periodontal disease. Periodontology 2000. 1993;2(1):57–71.

    PubMed  Google Scholar 

  179. Brown LJ, Brunelle JA, Kingman A. Periodontal status in the United States, 1988–1991: prevalence, extent, and demographic variation. J Dent Res. 1996;75(Spec No):672–83.

    PubMed  Google Scholar 

  180. LÖE H, Ånerud Å, Boysen H. The natural history of periodontal disease in man: prevalence, severity, and extent of gingival recession. J Periodontol. 1992;63(6):489–95.

    PubMed  Google Scholar 

  181. Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis. 2014;33(4):499–515.

    PubMed Central  PubMed  Google Scholar 

  182. Svensäter G, Larsson U, Greif ECG, Cvitkovitch DG, Hamilton IR. Acid tolerance response and survival by oral bacteria. Oral Microbiol Immunol. 1997;12(5):266–73.

    PubMed  Google Scholar 

  183. Hughes JA, West NX, Parker DM, van den Braak MH, Addy M. Effects of pH and concentration of citric, malic and lactic acids on enamel, in vitro. J Dent. 2000;28(2):147–52.

    PubMed  Google Scholar 

  184. Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 2011;90(3):294–303.

    PubMed  Google Scholar 

  185. Byun R, Nadkarni MA, Chhour KL, Martin FE, Jacques NA, Hunter N. Quantitative analysis of diverse lactobacillus species present in advanced dental caries. J Clin Microbiol. 2004;42(7):3128–36.

    PubMed Central  PubMed  Google Scholar 

  186. Bradshaw DJ, Mckee AS, Marsh PD. Effects of carbohydrate pulses and pH on population shifts within oral microbial communities in vitro. J Dent Res. 1989;68(9):1298–302.

    PubMed  Google Scholar 

  187. Zeng L, Burne RA. Comprehensive mutational analysis of sucrose-metabolizing pathways in Streptococcus mutans reveals novel roles for the sucrose phosphotransferase system permease. J Bacteriol. 2013;195(4):833–43.

    PubMed Central  PubMed  Google Scholar 

  188. Mo S, Bao W, Lai G, Wang J, Li M. The microfloral analysis of secondary caries biofilm around class I and class II composite and amalgam fillings. BMC Infect Dis. 2010;10:241.

    PubMed Central  PubMed  Google Scholar 

  189. Marsh PD. Role of the oral microflora in health. Microb Ecol Health Dis. 2000;12(3):130–7.

    Google Scholar 

  190. Okada M, Soda Y, Hayashi F, Doi T, Suzuki J, Miura K, et al. Longitudinal study of dental caries incidence associated with Streptococcus mutans and Streptococcus sobrinus in pre-school children. J Med Microbiol. 2005;54(Pt 7):661–5.

    PubMed  Google Scholar 

  191. Rosema NAM, Timmerman MF, Piscaer M, Strate J, Warren PR, Van der Velden U, et al. An oscillating/pulsating electric toothbrush versus a high-frequency electric toothbrush in the treatment of gingivitis. J Dent. 2005;33 Suppl 1:29–36.

    PubMed  Google Scholar 

  192. Versteeg PA, Timmerman MF, Rosema NAM, Warren PR, Van der Velden U, Van der Weijden GA. Sonic-powered toothbrushes and reversal of experimental gingivitis. J Clin Periodontol. 2005;32(12):1236–41.

    PubMed  Google Scholar 

  193. Berezow AB, Darveau RP. Microbial shift and periodontitis. Periodontology 2000. 2011;55(1):36–47.

    PubMed Central  PubMed  Google Scholar 

  194. Consensus report periodontal diseases: pathogenesis and microbial factors. Ann Periodontol. 2014;1(1):926–32.

    Google Scholar 

  195. Field EA, Speechley JA, Rugman FR, Varga E, Tyldesley WR. Oral signs and symptoms in patients with undiagnosed vitamin B12 deficiency. J Oral Pathol Med. 1995;24(10):468–70.

    PubMed  Google Scholar 

  196. Mager DL, Haffajee AD, Socransky SS. Effects of periodontitis and smoking on the microbiota of oral mucous membranes and saliva in systemically healthy subjects. J Clin Periodontol. 2003;30(12):1031–7.

    PubMed  Google Scholar 

  197. Cortelli JR, Aquino DR, Cortelli SC, Nobre Franco GC, Fernandes CB, Roman-Torres CVG, et al. Detection of periodontal pathogens in oral mucous membranes of edentulous individuals. J Periodontol. 2008;79(10):1962–5.

    PubMed  Google Scholar 

  198. Papaioannou W, Gizani S, Haffajee AD, Quirynen M, Mamai-Homata E, Papagiannoulis L. The microbiota on different oral surfaces in healthy children. Oral Microbiol Immunol. 2009;24(3):183–9.

    PubMed  Google Scholar 

  199. Umeda M, Contreras A, Chen C, Bakker I, Slots J. The utility of whole saliva to detect the oral presence of periodontopathic bacteria. J Periodontol. 1998;69(7):828–33.

    PubMed  Google Scholar 

  200. Umeda M, Chen C, Bakker I, Contreras A, Morrison JL, Slots J. Risk indicators for harboring periodontal pathogens. J Periodontol. 1998;69(10):1111–8.

    PubMed  Google Scholar 

  201. Albandar JM. Global risk factors and risk indicators for periodontal diseases. Periodontology 2000. 2002;29(1):177–206.

    PubMed  Google Scholar 

  202. Könönen E, Paju S, Pussinen PJ, Hyvönen M, Di Tella P, Suominen-Taipale L, et al. Population-based study of salivary carriage of periodontal pathogens in adults. J Clin Microbiol. 2007;45(8):2446–51.

    PubMed Central  PubMed  Google Scholar 

  203. Zhang L, Henson BS, Camargo PM, Wong DT. The clinical value of salivary biomarkers for periodontal disease. Periodontology 2000. 2009;51:25–37.

    PubMed  Google Scholar 

  204. Ramseier CA, Kinney JS, Herr AE, Braun T, Sugai JV, Shelburne CA, et al. Identification of pathogen and host-response markers correlated with periodontal disease. J Periodontol. 2009;80(3):436–46.

    PubMed  Google Scholar 

  205. Paju S, Pussinen PJ, Suominen-Taipale L, Hyvönen M, Knuuttila M, Könönen E. Detection of multiple pathogenic species in saliva is associated with periodontal infection in adults. J Clin Microbiol. 2009;47(1):235–8.

    PubMed Central  PubMed  Google Scholar 

  206. Giannobile WV, Beikler T, Kinney JS, Ramseier CA, Morelli T, Wong DT. Saliva as a diagnostic tool for periodontal disease: current state and future directions. Periodontology 2000. 2009;50:52–64.

    PubMed  Google Scholar 

  207. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6(1):e1000713.

    PubMed Central  PubMed  Google Scholar 

  208. Phalane KG, Kriel M, Loxton AG, Menezes A, Stanley K, van der Spuy GD, et al. Differential expression of host biomarkers in saliva and serum samples from individuals with suspected pulmonary tuberculosis. Mediat Inflamm. 2013;2013:981984.

    Google Scholar 

  209. Nakao K, Imoto I, Ikemura N, Shibata T, Takaji S, Taguchi Y, et al. Relation of lactoferrin levels in gastric mucosa with Helicobacter pylori infection and with the degree of gastric inflammation. Am J Gastroenterol. 1997;92(6):1005–11.

    PubMed  Google Scholar 

  210. Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D, et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem. 2013;288(37):26888–97.

    PubMed Central  PubMed  Google Scholar 

  211. Lamster IB, Lalla E, Borgnakke WS, Taylor GW. The relationship between oral health and diabetes mellitus. J Am Dent Assoc. 2008;139(5):19S–24.

    PubMed  Google Scholar 

  212. Kampoo K, Teanpaisan R, Ledder RG, McBain AJ. Oral bacterial communities in individuals with type 2 diabetes who live in southern Thailand. Appl Environ Microbiol. 2014;80(2):662–71.

    PubMed Central  PubMed  Google Scholar 

  213. Karjalainen KM, Knuuttila MLE. The onset of diabetes and poor metabolic control increases gingival bleeding in children and adolescents with insulin-dependent diabetes mellitus. J Clin Periodontol. 1996;23(12):1060–7.

    PubMed  Google Scholar 

  214. Chi AC, Neville BW, Krayer JW, Gonsalves WC. Oral manifestations of systemic disease. Am Fam Physician. 2010;82(11):1381–8.

    PubMed  Google Scholar 

  215. Taylor G, Borgnakke W. Periodontal disease: associations with diabetes, glycemic control and complications. Oral Dis. 2008;14(3):191–203.

    PubMed  Google Scholar 

  216. Tsai C, Hayes C, Taylor GW. Glycemic control of type 2 diabetes and severe periodontal disease in the US adult population. Community Dent Oral Epidemiol. 2002;30(3):182–92.

    PubMed  Google Scholar 

  217. Kumar P, Natarajan K, Shanmugam N. High glucose driven expression of pro-inflammatory cytokine and chemokine genes in lymphocytes: molecular mechanisms of IL-17 family gene expression. Cell Signal. 2014;26(3):528–39.

    PubMed  Google Scholar 

  218. Graves DT, Liu R, Alikhani M, Al-Mashat H, Trackman PC. Diabetes-enhanced inflammation and apoptosis–impact on periodontal pathology. J Dent Res. 2006;85(1):15–21.

    PubMed  Google Scholar 

  219. Martin M, Schifferle RE, Cuesta N, Vogel SN, Katz J, Michalek SM. Role of the Phosphatidylinositol 3 Kinase-AKT pathway in the regulation of IL-10 and IL-12 by porphyromonas gingivalis lipopolysaccharide. J Immunol. 2003;171(2):717–25.

    PubMed  Google Scholar 

  220. Salvi GE, Yalda B, Collins JG, Jones BH, Smith FW, Arnold RR, et al. Inflammatory mediator response as a potential risk marker for periodontal diseases in insulin-dependent diabetes mellitus patients. J Periodontol. 1997;68(2):127–35.

    PubMed  Google Scholar 

  221. Botero JE, Contreras A, Parra B. Profiling of inflammatory cytokines produced by gingival fibroblasts after human cytomegalovirus infection. Oral Microbiol Immunol. 2008;23(4):291–8.

    PubMed  Google Scholar 

  222. Kim J, Amar S. Periodontal disease and systemic conditions: a bidirectional relationship. Odontology. 2006;94(1):10–21.

    PubMed Central  PubMed  Google Scholar 

  223. Taylor JJ. Cytokine regulation of immune responses to Porphyromonas gingivalis. Periodontology 2000. 2010;54(1):160–94.

    PubMed  Google Scholar 

  224. Sfakianakis A, Barr CE, Kreutzer DL. Localization of the chemokine interleukin-8 and interleukin-8 receptors in human gingiva and cultured gingival keratinocytes. J Periodontol Res. 2002;37(2):154–60.

    Google Scholar 

  225. Mirbod SM, Ahing SI, Pruthi VK. Immunohistochemical study of vestibular gingival blood vessel density and internal circumference in smokers and non-smokers. J Periodontol. 2001;72(10):1318–23.

    PubMed  Google Scholar 

  226. Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med. 2008;14(3–4):222–31.

    PubMed Central  PubMed  Google Scholar 

  227. Guggenheimer J, Moore PA, Rossie K, Myers D, Mongelluzzo MB, Block HM, et al. Insulin-dependent diabetes mellitus and oral soft tissue pathologies. I. Prevalence and characteristics of non-candidal lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89(5):563–9.

    PubMed  Google Scholar 

  228. Guggenheimer J, Moore PA, Rossie K, Myers D, Mongelluzzo MB, Block HM, et al. Insulin-dependent diabetes mellitus and oral soft tissue pathologies: II. Prevalence and characteristics of candida and candidal lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89(5):570–6.

    PubMed  Google Scholar 

  229. Laass MW, Roggenbuck D, Conrad K. Diagnosis and classification of Crohn’s disease. Autoimmun Rev. 2014;13(4–5):467–71.

    PubMed  Google Scholar 

  230. Mays JW, Sarmadi M, Moutsopoulos NM. Oral manifestations of systemic autoimmune and inflammatory diseases: diagnosis and clinical management. J Evid Based Dent Pract. 2012;12(3 Supplement):265–82.

    PubMed  Google Scholar 

  231. Harty S, Fleming P, Rowland M, Crushell E, McDermott M, Drumm B, et al. A prospective study of the oral manifestations of Crohn’s disease. Clin Gastroenterol Hepatol. 2005;3(9):886–91.

    PubMed  Google Scholar 

  232. Chiodini RJ, Dowd SE, Davis B, Galandiuk S, Chamberlin WM, Kuenstner JT, et al. Crohn’s disease may be differentiated into 2 distinct biotypes based on the detection of bacterial genomic sequences and virulence genes within submucosal tissues. J Clin Gastroenterol. 2013;47(7):612–20.

    PubMed  Google Scholar 

  233. Michailidou E, Arvanitidou S, Lombardi T, Kolokotronis A, Antoniades D, Samson J. Oral lesions leading to the diagnosis of Crohn disease: report on 5 patients. Quintessence Int. 2009;40(7):581–8.

    PubMed  Google Scholar 

  234. Kuo S. The interplay between fiber and the intestinal microbiome in the inflammatory response. Adv Nutr. 2013;4(1):16–28.

    PubMed Central  PubMed  Google Scholar 

  235. Martin J, Geisel T, Maresch C, Krieger K, Stein J. Inadequate nutrient intake in patients with celiac disease: results from a German dietary survey. Digestion. 2013;87(4):240–6.

    PubMed  Google Scholar 

  236. Delaleu N, Immervoll H, Cornelius J, Jonsson R. Biomarker profiles in serum and saliva of experimental Sjögren’s syndrome: associations with specific autoimmune manifestations. Arthritis Res Ther. 2008;10(1):R22.

    PubMed Central  PubMed  Google Scholar 

  237. Al-Ahmad A, Roth D, Wolkewitz M, Wiedmann-Al-Ahmad M, Follo M, Ratka-Krüger P, et al. Change in diet and oral hygiene over an 8-week period: effects on oral health and oral biofilm. Clin Oral Investig. 2010;14(4):391–6.

    PubMed  Google Scholar 

  238. Humphrey LT, De Groote I, Morales J, Barton N, Collcutt S, Bronk Ramsey C, et al. Earliest evidence for caries and exploitation of starchy plant foods in Pleistocene hunter-gatherers from Morocco. Proc Natl Acad Sci U S A. 2014;111(3):954–9.

    PubMed Central  PubMed  Google Scholar 

  239. Scardina GA, Messina P. Good oral health and diet. J Biomed Biotechnol. 2012;2012:720692.

    PubMed Central  PubMed  Google Scholar 

  240. Saarela RKT, Soini H, Hiltunen K, Muurinen S, Suominen M, Pitkälä K. Dentition status, malnutrition and mortality among older service housing residents. J Nutr Health Aging. 2014;18(1):34–8.

    PubMed  Google Scholar 

  241. Moynihan PJ, Lingström P, Touger-Decker R, Sirois DA, Mobley CC. Oral consequences of compromised nutritional well-being. Humana Press; 2004. ISBN: 978-953-307-846-5, Available from: http://www.intechopen.com/books/insights-and-perspectives-in-rheumatology/oral-aspects-of-sjo-gren-ssyndrome

  242. Sajantila A. Major historical dietary changes are reflected in the dental microbiome of ancient skeletons. Investig Genet. 2013;4(1):10.

    PubMed Central  PubMed  Google Scholar 

  243. Dawes C. Estimates, from salivary analyses, of the turnover time of the oral mucosal epithelium in humans and the number of bacteria in an edentulous mouth. Arch Oral Biol. 2003;48(5):329–36.

    PubMed  Google Scholar 

  244. Creamer B, Shorter RG, Bamforth J. The turnover and shedding of epithelial cells: part I the turnover in the gastro-intestinal tract. Gut. 1961;2(2):110–6.

    PubMed Central  PubMed  Google Scholar 

  245. Greenberg MS. Clinical and histologic changes of the oral mucosa in pernicious anemia. Oral Surg Oral Med Oral Pathol. 1981;52(1):38–42.

    PubMed  Google Scholar 

  246. Drummond JF, White DK, Damm DD. Megaloblastic anemia with oral lesions: a consequence of gastric bypass surgery. Oral Surg Oral Med Oral Pathol. 1985;59(2):149–53.

    PubMed  Google Scholar 

  247. Hjorting-Hansen E, Bertram U. Oral aspects of pernicious anaemia. Br Dent J. 1968;125(6):266–70.

    PubMed  Google Scholar 

  248. Sweeney MP, Bagg J, Fell GS, Yip B. The relationship between micronutrient depletion and oral health in geriatrics. J Oral Pathol Med. 1994;23(4):168–71.

    PubMed  Google Scholar 

  249. Arslan SY, Leung KP, Wu CD. The effect of lactoferrin on oral bacterial attachment. Oral Microbiol Immunol. 2009;24(5):411–6.

    PubMed  Google Scholar 

  250. Paradkar PN, De Domenico I, Durchfort N, Zohn I, Kaplan J, Ward DM. Iron depletion limits intracellular bacterial growth in macrophages. Blood. 2008;112(3):866–74.

    PubMed Central  PubMed  Google Scholar 

  251. Berlutti F, Pilloni A, Pietropaoli M, Polimeni A, Valenti P. Lactoferrin and oral diseases: current status and perspective in periodontitis. Ann Stomatol (Roma). 2011;2(3–4):10–8.

    Google Scholar 

  252. Tang R, Huang M, Huang S. Relationship between dental caries status and anemia in children with severe early childhood caries. Kaohsiung J Med Sci. 2013;29(6):330–6.

    PubMed  Google Scholar 

  253. Ross AC. Diet in vitamin A research. Methods Mol Biol. 2010;652:295–313.

    PubMed  Google Scholar 

  254. Sessle BJ. Irreversibility of retarded incisor eruption in the vitamin A-deficient rat. J Oral Ther Pharmacol. 1968;4(5):395–7.

    PubMed  Google Scholar 

  255. Naidu KA. Vitamin C in human health and disease is still a mystery? An overview. Nutr J. 2003;2:7.

    PubMed Central  PubMed  Google Scholar 

  256. Pfeffer F, Casanueva E, Kamar J, Guerra A, Perichart O, Vadillo-Ortega F. Modulation of 72-kilodalton type IV collagenase (matrix metalloproteinase-2) by ascorbic acid in cultured human amnion-derived cells. Biol Reprod. 1998;59(2):326–9.

    PubMed  Google Scholar 

  257. Gerster H. Human vitamin C requirements. Z Ernahrungswiss. 1987;26(2):125–37.

    PubMed  Google Scholar 

  258. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    PubMed  Google Scholar 

  259. Tighe D, Kwok A, Putcha V, McGurk M. Identification of appropriate outcome indices in head and neck cancer and factors influencing them. Int J Oral Maxillofac Surg. 2014;43:1047–53.

    PubMed  Google Scholar 

  260. Jessri M, Farah CS. Next generation sequencing and its application in deciphering head and neck cancer. Oral Oncol. 2014;50(4):247–53.

    PubMed  Google Scholar 

  261. Zafereo M. Surgical salvage of recurrent cancer of the head and neck. Curr Oncol Rep. 2014;16(5):386.

    PubMed  Google Scholar 

  262. Meurman JH. Oral microbiota and cancer. J Oral Microbiol. 2010;2. doi:10.3402/jom.v2i0.5195.

  263. Choudhary K, Gandhi N, Rajeev R, Panda S. Role of bacteria in oral carcinogenesis. South Asian J Cancer. 2012;1(2):78–83.

    PubMed Central  PubMed  Google Scholar 

  264. Sasaki M, Yamaura C, Ohara-Nemoto Y, Tajika S, Kodama Y, Ohya T, et al. Streptococcus anginosus infection in oral cancer and its infection route. Oral Dis. 2005;11(3):151–6.

    PubMed  Google Scholar 

  265. Tateda M, Shiga K, Saijo S, Sone M, Hori T, Yokoyama J, et al. Streptococcus anginosus in head and neck squamous cell carcinoma: implication in carcinogenesis. Int J Mol Med. 2000;6(6):699–703.

    PubMed  Google Scholar 

  266. Yu X, Shahir A, Sha J, Feng Z, Eapen B, Nithianantham S, et al. Short-chain fatty acids from periodontal pathogens suppress histone deacetylases, EZH2, and SUV39H1 to promote Kaposi’s sarcoma-associated herpesvirus replication. J Virol. 2014;88(8):4466–79.

    PubMed Central  PubMed  Google Scholar 

  267. Ahn J, Chen CY, Hayes RB. Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control. 2012;23(3):399–404.

    PubMed Central  PubMed  Google Scholar 

  268. Han YW. Oral bacteria as drivers for colorectal cancer. J Periodontol. 2014;85:1155–7.

    PubMed  Google Scholar 

  269. Song H, Michel A, Nyrén O, Ekström A, Pawlita M, Ye W. A CagA-independent cluster of antigens related to the risk of noncardia gastric cancer: associations between helicobacter pylori antibodies and gastric adenocarcinoma explored by multiplex serology. Int J Cancer. 2014;134(12):2942–50.

    PubMed  Google Scholar 

  270. Perrais M, Rousseaux C, Ducourouble M, Courcol R, Vincent P, Jonckheere N, et al. Helicobacter pylori urease and flagellin alter mucin gene expression in human gastric cancer cells. Gastric Cancer. 2014;17(2):235–46.

    PubMed  Google Scholar 

  271. Corey L, Wald A, Celum CL, Quinn TC. The effects of herpes simplex virus-2 on HIV-1 acquisition and transmission: a review of two overlapping epidemics. J Acquir Immune Defic Syndr. 2004;35(5):435–45.

    PubMed  Google Scholar 

  272. Sarid O, Anson O, Yaari A, Margalith M. Epstein-Barr virus specific salivary antibodies as related to stress caused by examinations. J Med Virol. 2001;64(2):149–56.

    PubMed  Google Scholar 

  273. Yap LF, Ahmad M, Zabidi MMA, Chu TL, Chai SJ, Lee HM, et al. Oncogenic effects of WNT5A in Epstein-Barr virus-associated nasopharyngeal carcinoma. Int J Oncol. 2014;44(5):1774–80.

    PubMed  Google Scholar 

  274. Cimino PJ, Zhao G, Wang D, Sehn JK, Lewis JS, Duncavage EJ. Detection of viral pathogens in high grade gliomas from unmapped next-generation sequencing data. Exp Mol Pathol. 2014;96:310–5.

    PubMed  Google Scholar 

  275. Mirghani H, Amen F, Moreau F, Guigay J, Hartl DM, Hartl DM, Lacau St Guily J. Oropharyngeal cancers: relationship between epidermal growth factor receptor alterations and human papillomavirus status. Eur J Cancer. 2014;50(6):1100–11.

    PubMed  Google Scholar 

  276. Rajendra S, Sharma P. Barrett’s esophagus. Curr Treat Options Gastroenterol. 2014;12(2):169–82.

    PubMed  Google Scholar 

  277. Dayama A, Srivastava V, Shukla M, Singh R, Pandey M. Helicobacter pylori and oral cancer: possible association in a preliminary case control study. Asian Pac J Cancer Prev. 2011;12(5):1333–6.

    PubMed  Google Scholar 

  278. Fernando N, Jayakumar G, Perera N, Amarasingha I, Meedin F, Holton J. Presence of Helicobacter pylori in betel chewers and non betel chewers with and without oral cancers. BMC Oral Health. 2009;9:23.

    PubMed Central  PubMed  Google Scholar 

  279. Lalla E, Kaplan S, Chang SJ, Roth GA, Celenti R, Hinckley K, et al. Periodontal infection profiles in type 1 diabetes. J Clin Periodontol. 2006;33(12):855–62.

    PubMed  Google Scholar 

  280. Lax AJ, Thomas W. How bacteria could cause cancer: one step at a time. Trends Microbiol. 2002;10(6):293–9.

    PubMed  Google Scholar 

  281. Sheu B. Cytokine regulation networks in the cancer microenvironment. Front Biosci. 2008;13:6255.

    PubMed  Google Scholar 

  282. Katz J, Wallet S, Cha S. Periodontal disease and the oral-systemic connection: “is it all the RAGE?”. Quintessence Int. 2010;41(3):229–37.

    PubMed  Google Scholar 

  283. Tezal M, Sullivan MA, Reid ME, Marshall JR, Hyland A, Loree T, et al. Chronic periodontitis and the risk of tongue cancer. Arch Otolaryngol Head Neck Surg. 2007;133(5):450–4.

    PubMed  Google Scholar 

  284. Michaud DS. Role of bacterial infections in pancreatic cancer. Carcinogenesis. 2013;34(10):2193–7.

    PubMed Central  PubMed  Google Scholar 

  285. Ferlay J, Shin H, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.

    PubMed  Google Scholar 

  286. Dharmani P, Strauss J, Ambrose C, Allen-Vercoe E, Chadee K. Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun. 2011;79(7):2597–607.

    PubMed Central  PubMed  Google Scholar 

  287. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491(7423):254–8.

    PubMed Central  PubMed  Google Scholar 

  288. Keku TO, McCoy AN, Azcarate-Peril AM. Fusobacterium spp. and colorectal cancer: cause or consequence? Trends Microbiol. 2013;21(10):506–8.

    PubMed  Google Scholar 

  289. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91.

    PubMed Central  PubMed  Google Scholar 

  290. Somasundaram R, Herlyn M. Melanoma exosomes: messengers of metastasis. Nat Med. 2012;18(6):853–4.

    PubMed  Google Scholar 

  291. O’Connor BP, Eun S, Ye Z, Zozulya AL, Lich JD, Moore CB, et al. Semaphorin 6D regulates the late phase of CD4+ T cell primary immune responses. Proc Natl Acad Sci U S A. 2008;105(35):13015–20.

    PubMed Central  PubMed  Google Scholar 

  292. Rehman M, Tamagnone L. Semaphorins in cancer: biological mechanisms and therapeutic approaches. Semin Cell Dev Biol. 2013;24(3):179–89.

    PubMed  Google Scholar 

  293. Zhao X, Chen L, Xu Q, Li Y. Expression of semaphorin 6D in gastric carcinoma and its significance. WJG. 2006;12(45):7388–90.

    PubMed Central  PubMed  Google Scholar 

  294. Lin F, Fukuoka Y, Spicer A, Ohta R, Okada N, Harris CL, et al. Tissue distribution of products of the mouse decay-accelerating factor (DAF) genes. Exploitation of a Daf1 knock-out mouse and site-specific monoclonal antibodies. Immunology. 2001;104(2):215–25.

    PubMed Central  PubMed  Google Scholar 

  295. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997;277(5328):942–6.

    PubMed  Google Scholar 

  296. Garsin DA. Long-lived C, elegans daf-2 mutants are resistant to bacterial pathogens. Science. 2003;300(5627):1921.

    PubMed  Google Scholar 

  297. Kenon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366(6454):461–4.

    Google Scholar 

  298. Kalamajski S, Aspberg A, Lindblom K, Heinegård D, Oldberg A. Asporin competes with decorin for collagen binding, binds calcium and promotes osteoblast collagen mineralization. Biochem J. 2009;423(1):53–9.

    PubMed  Google Scholar 

  299. Martínez-Gil M, Romero D, Kolter R, Espinosa-Urgel M. Calcium causes multimerization of the large adhesin LapF and modulates biofilm formation by Pseudomonas putida. J Bacteriol. 2012;194(24):6782–9.

    PubMed Central  PubMed  Google Scholar 

  300. Abraham NM, Jefferson KK. Staphylococcus aureus clumping factor B mediates biofilm formation in the absence of calcium. Microbiology. 2012;158(Pt 6):1504–12.

    PubMed Central  PubMed  Google Scholar 

  301. Shukla SK, Rao TS. Effect of calcium on Staphylococcus aureus biofilm architecture: a confocal laser scanning microscopic study. Colloids Surf B Biointerfaces. 2013;103:448–54.

    PubMed  Google Scholar 

  302. Cruz LF, Cobine PA, La Fuente DL. Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility. Appl Environ Microbiol. 2012;78(5):1321–31.

    PubMed Central  PubMed  Google Scholar 

  303. Samaranayake LP, Keung Leung W, Jin L. Oral mucosal fungal infections. Periodontology 2000. 2009;49:39–59.

    PubMed  Google Scholar 

  304. Williams DW, Kuriyama T, Silva S, Malic S, Lewis MAO. Candida biofilms and oral candidosis: treatment and prevention. Periodontology 2000. 2011;55(1):250–65.

    PubMed  Google Scholar 

  305. Fichtenbaum CJ, Koletar S, Yiannoutsos C, Holland F, Pottage J, Cohn SE, et al. Refractory mucosal candidiasis in advanced human immunodeficiency virus infection. Clin Infect Dis. 2000;30(5):749–56.

    PubMed  Google Scholar 

  306. Bruatto M, Vidotto V, Marinuzzi G, Raiteri R, Sinicco A. Candida albicans biotypes in human immunodeficiency virus type 1-infected patients with oral candidiasis before and after antifungal therapy. J Clin Microbiol. 1991;29(4):726–30.

    PubMed Central  PubMed  Google Scholar 

  307. Feigal DW, Katz MH, Greenspan D, Westenhouse J, Winkelstein W, Lang W, et al. The prevalence of oral lesions in HIV-infected homosexual and bisexual men: three San Francisco epidemiological cohorts. AIDS. 1991;5(5):519–25.

    PubMed  Google Scholar 

  308. McCarthy GM, Mackie ID, Koval J, Sandhu HS, Daley TD. Factors associated with increased frequency of HIV-related oral candidiasis. J Oral Pathol Med. 1991;20(7):332–6.

    PubMed  Google Scholar 

  309. Boriollo MFG, Bassi RC, Santos Nascimento dos CMG, Feliciano LM, Francisco SB, Barros LM, et al. Distribution and hydrolytic enzyme characteristics of Candida albicans strains isolated from diabetic patients and their non-diabetic consorts. Oral Microbiol Immunol. 2009;24(6):437–50.

    PubMed  Google Scholar 

  310. Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, et al. Genomic variation landscape of the human gut microbiome. Nature. 2013;493(7430):45–50.

    PubMed Central  PubMed  Google Scholar 

  311. Wesolowski LG, MacKellar DA, Facente SN, Dowling T, Ethridge SF, Zhu JH, et al. Post-marketing surveillance of OraQuick whole blood and oral fluid rapid HIV testing. AIDS. 2006;20(12):1661–6.

    PubMed  Google Scholar 

  312. Raggam RB, Wagner J, Michelin BDA, Putz-Bankuti C, Lackner A, Bozic M, et al. Reliable detection and quantitation of viral nucleic acids in oral fluid: liquid phase-based sample collection in conjunction with automated and standardized molecular assays. J Med Virol. 2008;80(9):1684–8.

    PubMed  Google Scholar 

  313. Slots J. Herpesviral-bacterial interactions in periodontal diseases. Periodontology 2000. 2010;52(1):117–40.

    PubMed  Google Scholar 

  314. Goyal A, Shaikh NJ, Kinikar AA, Wairagkar NS. Oral fluid, a substitute for serum to monitor measles IgG antibody? Indian J Med Microbiol. 2009;27(4):351–3.

    PubMed  Google Scholar 

  315. Williams SCP. The other microbiome. Proc Natl Acad Sci U S A. 2013;110(8):2682–4.

    PubMed Central  PubMed  Google Scholar 

  316. Orlova EV. How viruses infect bacteria? EMBO J. 2009;28(7):797–8.

    PubMed Central  PubMed  Google Scholar 

  317. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466(7304):334–8.

    PubMed Central  PubMed  Google Scholar 

  318. Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21(10):1616–25.

    PubMed Central  PubMed  Google Scholar 

  319. Willner D, Furlan M, Haynes M, Schmieder R, Angly FE, Silva J, et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS ONE. 2009;4(10):e7370.

    PubMed Central  PubMed  Google Scholar 

  320. McElvania TeKippe E, Wylie KM, Deych E, Sodergren E, Weinstock G, Storch GA. Increased prevalence of anellovirus in pediatric patients with fever. PLoS ONE. 2012;7(11):e50937.

    PubMed Central  PubMed  Google Scholar 

  321. Celum CL. The interaction between herpes simplex virus and human immunodeficiency virus. Herpes. 2004;11 Suppl 1:36A–45.

    PubMed  Google Scholar 

  322. Stoopler ET. Oral herpetic infections (HSV 1–8). Dent Clin N Am. 2005;49(1):15–29, vii.

    PubMed  Google Scholar 

  323. Slots J. Human viruses in periodontitis. Periodontology 2000. 2010;53:89–110.

    PubMed  Google Scholar 

  324. Slots J. Oral viral infections of adults. Periodontology 2000. 2009;49:60–86.

    PubMed  Google Scholar 

  325. Shirtcliff EA, Coe CL, Pollak SD. Early childhood stress is associated with elevated antibody levels to herpes simplex virus type 1. Proc Natl Acad Sci U S A. 2009;106(8):2963–7.

    PubMed Central  PubMed  Google Scholar 

  326. Mehta SK, Cohrs RJ, Forghani B, Zerbe G, Gilden DH, Pierson DL. Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J Med Virol. 2004;72(1):174–9.

    PubMed  Google Scholar 

  327. Mehta SK, Pierson DL, Cooley H, Dubow R, Lugg D. Epstein-Barr virus reactivation associated with diminished cell-mediated immunity in antarctic expeditioners. J Med Virol. 2000;61(2):235–40.

    PubMed  Google Scholar 

  328. Pierson DL, Stowe RP, Phillips TM, Lugg DJ, Mehta SK. Epstein-Barr virus shedding by astronauts during space flight. Brain Behav Immun. 2005;19(3):235–42.

    PubMed  Google Scholar 

  329. Payne DA, Mehta SK, Tyring SK, Stowe RP, Pierson DL. Incidence of Epstein-Barr virus in astronaut saliva during spaceflight. Aviat Space Environ Med. 1999;70(12):1211–3.

    PubMed  Google Scholar 

  330. Uchakin PN, Stowe RP, Paddon-Jones D, Tobin BW, Ferrando AA, Wolfe RR. Cytokine secretion and latent herpes virus reactivation with 28 days of horizontal hypokinesia. Aviat Space Environ Med. 2007;78(6):608–12.

    PubMed  Google Scholar 

  331. Sarid O, Anson O, Yaari A, Margalith M. Human cytomegalovirus salivary antibodies as related to stress. Clin Lab. 2002;48(5–6):297–305.

    PubMed  Google Scholar 

  332. Sarid O, Anson O, Yaari A, Margalith M. Academic stress, immunological reaction, and academic performance among students of nursing and physiotherapy. Res Nurs Health. 2004;27(5):370–7.

    PubMed  Google Scholar 

  333. Cohrs RJ, Mehta SK, Schmid DS, Gilden DH, Pierson DL. Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J Med Virol. 2008;80(6):1116–22.

    PubMed Central  PubMed  Google Scholar 

  334. Brown ZA, Selke S, Zeh J, Kopelman J, Maslow A, Ashley RL, et al. The acquisition of herpes simplex virus during pregnancy. N Engl J Med. 1997;337(8):509–15.

    PubMed  Google Scholar 

  335. Miller CS, Cunningham LL, Lindroth JE, Avdiushko SA. The efficacy of valacyclovir in preventing recurrent herpes simplex virus infections associated with dental procedures. J Am Dent Assoc. 2004;135(9):1311–8.

    PubMed  Google Scholar 

  336. Breuer J, Whitley R. Varicella zoster virus: natural history and current therapies of varicella and herpes zoster. Herpes. 2007;14 Suppl 2:25–9.

    PubMed  Google Scholar 

  337. Ongrádi J, Várnai G, Bendinelli M, Kulcsár G, Dán P, Nász I. Carriage, transfer and interaction of oral viruses and bacteria. Acta Microbiol Hung. 1993;40(3):201–16.

    PubMed  Google Scholar 

  338. Liu YG, Lerner UH, Teng YA. Cytokine responses against periodontal infection: protective and destructive roles. Periodontology 2000. 2010;52(1):163–206.

    PubMed  Google Scholar 

  339. Carlsson G, Wahlin Y, Johansson A, Olsson A, Eriksson T, Claesson R, et al. Periodontal disease in patients from the original Kostmann family with severe congenital neutropenia. J Periodontol. 2006;77(4):744–51.

    PubMed  Google Scholar 

  340. Wu Y, Yan J, Ojcius DM, Chen L, Gu Z, Pan J. Correlation between infections with different genotypes of human cytomegalovirus and Epstein-Barr virus in subgingival samples and periodontal status of patients. J Clin Microbiol. 2007;45(11):3665–70.

    PubMed Central  PubMed  Google Scholar 

  341. Sahin S, Saygun I, Kubar A, Slots J. Periodontitis lesions are the main source of salivary cytomegalovirus. Oral Microbiol Immunol. 2009;24(4):340–2.

    PubMed  Google Scholar 

  342. Slots J. Herpesviruses, the missing link between gingivitis and periodontitis? J Int Acad Periodontol. 2004;6(4):113–9.

    PubMed  Google Scholar 

  343. Grenier G, Gagnon G, Grenier D. Detection of herpetic viruses in gingival crevicular fluid of patients suffering from periodontal diseases: prevalence and effect of treatment. Oral Microbiol Immunol. 2009;24(6):506–9.

    PubMed  Google Scholar 

  344. Saygun I, Kubar A, Ozdemir A, Slots J. Periodontitis lesions are a source of salivary cytomegalovirus and Epstein-Barr virus. J Periodont Res. 2005;40(2):187–91.

    PubMed  Google Scholar 

  345. Contreras A, Umeda M, Chen C, Bakker I, Morrison JL, Slots J. Relationship between herpesviruses and adult periodontitis and periodontopathic bacteria. J Periodontol. 1999;70(5):478–84.

    PubMed  Google Scholar 

  346. Sharma R, Padmalatha O, Kaarthikeyan G, Jayakumar ND, Varghese S, Sherif K. Comparative analysis of presence of Cytomegalovirus (CMV) and Epsteinbarr virus -1 (EBV-1) in cases of chronic periodontitis and aggressive periodontitis with controls. Indian J Dent Res. 2012;23(4):454–8.

    PubMed  Google Scholar 

  347. Das S, Krithiga GSP, Gopalakrishnan S. Detection of human herpes viruses in patients with chronic and aggressive periodontitis and relationship between viruses and clinical parameters. J Oral Maxillofac Pathol. 2012;16(2):203–9.

    PubMed Central  PubMed  Google Scholar 

  348. McMillan BC, Golubjatnikov R, Hanson RP, Sinha SK. A study of Cytomegalovirus, Epstein-Barr virus and Herpesvirus hominis (types 1 and 2) antibody in institutionalized and non-institutionalized children. Health Lab Sci. 1977;14(4):261–8.

    PubMed  Google Scholar 

  349. Idesawa M, Sugano N, Ikeda K, Oshikawa M, Takane M, Seki K, et al. Detection of Epstein-Barr virus in saliva by real-time PCR. Oral Microbiol Immunol. 2004;19(4):230–2.

    PubMed  Google Scholar 

  350. Abiko Y, Ikeda M, Hondo R. Secretion and dynamics of herpes simplex virus in tears and saliva of patients with Bell’s palsy. Otol Neurotol. 2002;23(5):779–83.

    PubMed  Google Scholar 

  351. Furuta Y, Aizawa H, Ohtani F, Sawa H, Fukuda S. Varicella-zoster virus DNA level and facial paralysis in Ramsay Hunt syndrome. Ann Otol Rhinol Laryngol. 2004;113(9):700–5.

    PubMed  Google Scholar 

  352. Furuta Y, Ohtani F, Sawa H, Fukuda S, Inuyama Y. Quantitation of varicella-zoster virus DNA in patients with Ramsay Hunt syndrome and zoster sine herpete. J Clin Microbiol. 2001;39(8):2856–9.

    PubMed Central  PubMed  Google Scholar 

  353. Brown EL, Wald A, Hughes JP, Morrow RA, Krantz E, Mayer K, et al. High risk of human immunodeficiency virus in men who have sex with men with herpes simplex virus type 2 in the EXPLORE study. Am J Epidemiol. 2006;164(8):733–41.

    PubMed  Google Scholar 

  354. Gray RH, Wawer MJ, Sewankambo NK, Serwadda D, Li C, Moulton LH, et al. Relative risks and population attributable fraction of incident HIV associated with symptoms of sexually transmitted diseases and treatable symptomatic sexually transmitted diseases in Rakai District, Uganda. Rakai Project Team. AIDS. 1999;13(15):2113–23.

    PubMed  Google Scholar 

  355. Reynolds SJ, Risbud AR, Shepherd ME, Zenilman JM, Brookmeyer RS, Paranjape RS, et al. Recent herpes simplex virus type 2 infection and the risk of human immunodeficiency virus type 1 acquisition in India. J Infect Dis. 2003;187(10):1513–21.

    PubMed  Google Scholar 

  356. Holmberg SD, Stewart JA, Gerber AR, Byers RH, Lee FK, O’Malley PM, et al. Prior herpes simplex virus type 2 infection as a risk factor for HIV infection. JAMA. 1988;259(7):1048–50.

    PubMed  Google Scholar 

  357. Wald A, Corey L. How does herpes simplex virus type 2 influence human immunodeficiency virus infection and pathogenesis? J Infect Dis. 2003;187(10):1509–12.

    PubMed  Google Scholar 

  358. Golden MP, Kim S, Hammer SM, Ladd EA, Schaffer PA, DeLuca N, et al. Activation of human immunodeficiency virus by herpes simplex virus. J Infect Dis. 1992;166(3):494–9.

    PubMed  Google Scholar 

  359. Hanookai D, Nowzari H, Contreras A, Morrison JL, Slots J. Herpesviruses and periodontopathic bacteria in Trisomy 21 periodontitis. J Periodontol. 2000;71(3):376–84.

    PubMed  Google Scholar 

  360. do Canto CL, Granato CF, Garcez E, Villas Boas LS, Fink MC, Estevam MP, et al. Cytomegalovirus infection in children with Down syndrome in a day-care center in Brazil. Rev Inst Med Trop Sao Paulo. 2000;42(4):179–83.

    PubMed  Google Scholar 

  361. Rhinow K, Schmidt-Westhausen AM, Ellerbrok H, Pauli G, Schetelig J, Siegert W. Quantitative determination of CMV-DNA in saliva of patients with bone marrow and stem cell transplantation using TaqMan-PCR. Mund Kiefer Gesichtschir. 2003;7(6):361–4.

    PubMed  Google Scholar 

  362. Kilian M, Frandsen EVG, Haubek D, Poulsen K. The etiology of periodontal disease revisited by population genetic analysis. Periodontology 2000. 2006;42:158–79.

    PubMed  Google Scholar 

  363. Michalowicz BS, Ronderos M, Camara-Silva R, Contreras A, Slots J. Human herpesviruses and Porphyromonas gingivalis are associated with juvenile periodontitis. J Periodontol. 2000;71(6):981–8.

    PubMed  Google Scholar 

  364. Teughels W, Sliepen I, Quirynen M, Haake SK, Van Eldere J, Fives-Taylor P, et al. Human cytomegalovirus enhances A. actinomycetemcomitans adherence to cells. J Dent Res. 2007;86(2):175–80.

    PubMed  Google Scholar 

  365. Stern J, Shai E, Zaks B, Halabi A, Houri-Haddad Y, Shapira L, et al. Reduced expression of gamma interferon in serum and marked lymphoid depletion induced by Porphyromonas gingivalis increase murine morbidity and mortality due to cytomegalovirus infection. Infect Immun. 2004;72(10):5791–8.

    PubMed Central  PubMed  Google Scholar 

  366. Traylen CM, Patel HR, Fondaw W, Mahatme S, Williams JF, Walker LR, et al. Virus reactivation: a panoramic view in human infections. Futur Virol. 2011;6(4):451–63.

    Google Scholar 

  367. Qiu X, Chen D, Liu C, Mauk MG, Kientz T, Bau HH. A portable, integrated analyzer for microfluidic – based molecular analysis. Biomed Microdevices. 2011;13(5):809–17.

    PubMed  Google Scholar 

  368. Raggam RB, Wagner J, Bozic M, Michelin BDA, Hammerschmidt S, Homberg C, et al. Detection and quantitation of Epstein-Barr virus (EBV) DNA in EDTA whole blood samples using automated sample preparation and real time PCR. Clin Chem Lab Med. 2010;48(3):413–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer E. Kerr PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kerr, J.E., Tribble, G.D. (2015). Salivary Diagnostics and the Oral Microbiome. In: Streckfus, C. (eds) Advances in Salivary Diagnostics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45399-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45399-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45398-8

  • Online ISBN: 978-3-662-45399-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics