Skip to main content

The History of Salivary Diagnostics

  • Chapter
  • First Online:
Advances in Salivary Diagnostics

Abstract

Within the last two-and-a-half decades, the area of salivary diagnostics continues to record significant and substantial activities on the radars of biomedical research and clinical diagnostics. Along with chronicling the highlight moments in the development and subsequent emergence of the field of salivary diagnostics to date, this chapter will discuss the concept of biomarkers and provide an overview of the advantages and disadvantages of saliva and serum as diagnostic media. Finally, the section on the Legal Issues Related to Salivary Diagnostics will provide ample speculations on potential legal scrutiny, pitfalls, and other legal tests anticipated along the path of development of salivary diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michael P. Saliva as an aid in the detection of diathetic diseases. Dent Diag. 1901;7:105–10.

    Google Scholar 

  2. Kirk EC. Saliva as an index of faulty metabolism. Dent Diag. 1903;9:1126–38.

    Google Scholar 

  3. Hensen B, Zentz R, Wong DT. A primer of salivary diagnostics. American Dental Association 1995–2009. www.ada.org/…/Science%20and%20Research/Files/saliva_diagnostics.ashx

  4. Kadehjian L. Legal issues in oral fluid testing. Forensic Sci Int. 2005;150(2–3):151–60.

    Article  PubMed  Google Scholar 

  5. Tabak LA. A revolution in biomedical assessment: the development of salivary diagnostics. J Dent Educ. 2001;65:1335–9.

    PubMed  Google Scholar 

  6. Malamud D, Tabak LA, editors. Saliva as a diagnostic fluid, vol. 694. New York: Annals of the New York Academy of Sciences; 1993.

    Google Scholar 

  7. Costa Jr PT, Chauncey HH, Rose CL, Kapur KK. Relationship of parotid saliva flow rate and composition with personality traits in healthy men. See comment in PubMed Commons below. Oral Surg Oral Med Oral Pathol. 1980;50(5):416–22.

    Article  PubMed  Google Scholar 

  8. Garrett JR. Changing attitudes on salivary secretion—a short history on spit. Proc R Soc Med. 1975;68:553.

    PubMed Central  PubMed  Google Scholar 

  9. Mandel ID. A contemporary view of salivary research. Crit Rev Oral Biol Med. 1993;4:599.

    PubMed  Google Scholar 

  10. Schipper RG, Silletti E, Vingerhoeds MH. Saliva as research material: biochemical, physicochemical and practical aspects. Arch Oral Biol. 2007;52(12):1114–35.

    Article  PubMed  Google Scholar 

  11. Jaedicke KM, Taylor JJ, Preshaw PM. Validation and quality control of ELISAs for the use with human saliva samples. See comment in PubMed Commons below. J Immunol Methods. 2012;377(1–2):62–5. doi:10.1016/j.jim.2012.01.010. Epub 2012 Jan 28.

    Article  PubMed  Google Scholar 

  12. Wong DT. Salivaomics. J Am Dent Assoc. 2012;143(10 Suppl):19S–24.

    Article  PubMed  Google Scholar 

  13. Brinkmann O, Wong DT. Salivary transcriptome biomarkers in oral squamous cell cancer detection. Adv Clin Chem. 2011;55:21–34.

    Article  PubMed  Google Scholar 

  14. Urdea MS, Neuwald PD, Greenberg BL, Glick M, Galloway J, Williams D, Wong DT. Saliva, diagnostics, and dentistry. Adv Dent Res. 2011;23(4):353–9. doi:10.1177/0022034511420432.

    Article  PubMed  Google Scholar 

  15. Yan W, Yu W, Than S, Hu Z, Zhou H, Wong DT. Salivaomics knowledge base (SKB) (abstract 1179). Presented at the 37th annual meeting and exhibition of the American Association for Dental Research; 5 Apr 2008; Dallas.

    Google Scholar 

  16. Li Y, Elashoff D, Oh M, et al. Serum circulating human mRNA profiling and its utility for oral cancer detection. J Clin Oncol. 2006;24(11):1754–60. doi:10.1200/JCO.2005.03.7598 [Published online ahead of print 27 Feb 2006].

    Article  PubMed  Google Scholar 

  17. Li Y, St John MA, Zhou X, et al. Salivary transcriptome diagnostics for oral cancer detection. Clin Cancer Res. 2004;10(24):8442–50.

    Article  PubMed  Google Scholar 

  18. Wong DT, Segal A. Salivary diagnostics: enhancing disease detection and making medicine better. Eur J Dent Res. 2008;12(S1):22–9.

    Google Scholar 

  19. Denny P, Hagen FK, Hardt M, et al. The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. J Proteome Res. 2008;7(5):1994–2006. doi:10.1021/pr700764j [Published online ahead of print 25 Mar 2008].

    Article  PubMed Central  PubMed  Google Scholar 

  20. Yan W, Apweiler R, Balgley BM, et al. Systematic comparison of the human saliva and plasma proteomes. Proteomics Clin Appl. 2009;3(1):116–34.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010;6(1):78–95. doi:10.1007/s11306-009-0178-y [Published online ahead of print 10 Sept 2009].

    Article  PubMed Central  PubMed  Google Scholar 

  22. Farrell JJ, Zhang L, Zhou H, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012;61(4):582–8. doi:10.1136/gutjnl-2011-300784 [Published online ahead of print 12 Oct 2011].

    Article  PubMed Central  PubMed  Google Scholar 

  23. Salivaomics Knowledge Base. www.skb.ucla.edu. Accessed 19 Aug 2012.

  24. Hu S, Li Y, Wang J, et al. Human saliva proteome and transcriptome. J Dent Res. 2006;85(12):1129–33.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Huang CM, Zhu W. Profiling human saliva endogenous peptidome via a high throughput MALDI-TOF-TOF mass spectrometry. Comb Chem High Throughput Screen. 2009;12(5):521–31.

    Article  PubMed  Google Scholar 

  26. Takeda I, Stretch C, Barnaby P, et al. Understanding the human salivary metabolome. NMR Biomed. 2009;22(6):577–84.

    Article  PubMed  Google Scholar 

  27. Ng DP, Koh D, Choo S, Chia KS. Saliva as a viable alternative source of human genomic DNA in genetic epidemiology. Clin Chim Acta. 2006;367(1–2):81–5. doi:10.1016/j.cca.2005.11.024 [Published online ahead of print 4 Jan 2006].

    Article  PubMed  Google Scholar 

  28. Ai J, Smith B, Wong DT. Saliva ontology: an ontology-based framework for a salivaomics knowledge base. BMC Bioinforma. 2010;11:302.

    Article  Google Scholar 

  29. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kasprzyk A. BioMart: driving a paradigm change in biological data management. Database (Oxford). 2011;2011:bar049. doi:10.1093/database/bar049 [Published online before print 12 Nov 2011].

  31. Zhang J, Haider S, Baran J, et al. BioMart: a data federation framework for large collaborative projects. Database (Oxford). 2011;2011:bar038. doi:10.1093/database/bar038 [Published online before print 19 Sept 2011].

  32. Guberman JM, Ai J, Arnaiz O, et al. BioMart Central Portal: an open database network for the biological community. Database (Oxford). 2011;2011: bar041. doi:10.1093/database//bar041 [Published online ahead of print 16 Sept 2011].

  33. Haider S, Ballester B, Smedley D, et al. BioMart Central Portal: unified access to biological data. Nucleic Acids Res. 2009;37(Web Server issue): W23–7. doi:10.1093/nar/gkp/265 [Published online ahead of print 6 May 2009].

  34. Birney E, Andrews TD, Bevan P, et al. An overview of Ensembl. Genome Res. 2004;14(5):925–8. doi:10.1101/gr.1860604 [Published online ahead of print 12 Apr 2004].

    Article  PubMed Central  PubMed  Google Scholar 

  35. National Institutes of Health (NIH) Working Group and the Biomarker Consortium. http://www.biomarkersconsortium.org

  36. Mishra A, Verma M. Cancer biomarkers: are we ready for the prime time? Cancer. 2010;2:190–208.

    Article  Google Scholar 

  37. Hulka BS. Overview of biological markers. In: Hulka BS, Griffith JD, Wilcosky TC, editors. Biological markers in epidemiology. New York: Oxford University Press; 1990. p. 3–15.

    Google Scholar 

  38. Naylor S. Biomarkers: current perspectives and future prospects. Expert Rev Mol Diagn. 2003;3:525–9.

    Article  PubMed  Google Scholar 

  39. Mayeux R. Biomarkers: potential uses and limitations. NeuroRx. 2004;1(2):182–8.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Biomarkers in risk assessment: validity and validation, environmental health criteria series, No. 222, WHO. http://apps.who.int/bookorders/anglais/detart1.jsp?codlan=1&codcol=16&codcch=222

  41. Perera FP, Weinstein IB. Molecular epidemiology: recent advances and future directions. Carcinogenesis. 2000;21:517–24.

    Article  PubMed  Google Scholar 

  42. Verbeek MM, De Jong D, Kremer HP. Brain-specific proteins in cerebrospinal fluid for the diagnosis of neurodegenerative diseases. Ann Clin Biochem. 2003;40:25–40.

    Article  PubMed  Google Scholar 

  43. Galasko D. New approaches to diagnose and treat Alzheimer’s disease: a glimpse of the future. Clin Geriatr Med. 2001;17:393–410.

    Article  PubMed  Google Scholar 

  44. Rohlff C. Proteomics in neuropsychiatric disorders. Int J Neuropsychopharmacol. 2001;4:93–102.

    Article  PubMed  Google Scholar 

  45. Reiber H, Peter JB. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci. 2001;184:101–22.

    Article  PubMed  Google Scholar 

  46. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286:531–7.

    Article  PubMed  Google Scholar 

  47. van Houten VM, Tabor MP, van den Brekel MW, Denkers F, Wishaupt RG, Kummer JA, Snow GB, Brakenhoff RH. Molecular assays for the diagnosis of minimal residual head-and- neck cancer: methods, reliability, pitfalls, and solutions. Clin Cancer Res. 2000;6:3803–16.

    PubMed  Google Scholar 

  48. Ogbureke KU, Weinberger PM, Looney SW, Li L, Fisher LW. Expressions of matrix metalloproteinase-9 (MMP-9), dentin sialophosphoprotein (DSPP), and osteopontin (OPN) at histologically negative surgical margins may predict recurrence of oral squamous cell carcinoma. Oncotarget. 2012;3(3):286–98.

    PubMed Central  PubMed  Google Scholar 

  49. Ogbureke KU, Abdelsayed RA, Kushner H, Li L, Fisher LW. Two members of the SIBLING family of proteins, DSPP and BSP, may predict the transition of oral epithelial dysplasia to oral squamous cell carcinoma. Cancer. 2010;116(7):1709–17. doi:10.1002/cncr.24938.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Nunes DN, Kowalski LP, Simpson AJ. Detection of oral and oropharyngeal cancer by microsatellite analysis in mouth washes and lesion brushings. Oral Oncol. 2000;36:525–8.

    Article  PubMed  Google Scholar 

  51. Buccheri G, Ferrigno D. Lung tumour markers in oncology practice: a study of TPA and CA125. Br J Cancer. 2002;87:1112–8.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Slebos RJ, Kibbelaar RE, Dalesio O, Kooistra A, Stam J, Meijer CJ, Wagenaar SS, Vanderschueren RG, van Zandwijk N, Mooi WJ. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med. 1990;323:561–5.

    Article  PubMed  Google Scholar 

  53. Hirsch FR, Varella-Garcia M, Bunn Jr PA, Di Maria MV, Veve R, Bremmes RM, Barón AE, Zeng C, Franklin WA. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol. 2003;21:3798–807.

    Article  PubMed  Google Scholar 

  54. Christensen JG, Burrows J, Salgia R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett. 2005;225:1–26.

    Article  PubMed  Google Scholar 

  55. Steels E, Paesmans M, Berghmans T, Branle F, Lemaitre F, Mascaux C, Meert AP, Vallot F, Lafitte JJ, Sculier JP. Role of p53 as a prognostic factor for survival in lung cancer: a systematic review of the literature with a meta-analysis. Eur Respir J. 2001;18:705–19.

    Article  PubMed  Google Scholar 

  56. Salgia R, Skarin AT. Molecular abnormalities in lung cancer. J Clin Oncol. 1998;16:1207–17.

    PubMed  Google Scholar 

  57. Belinsky SA, Klinge DM, Dekker JD, Smith MW, Bocklage TJ, Gilliland FD, Crowell RE, Karp DD, Stidley CA, Picchi MA. Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clin Cancer Res. 2005;11:6505–11.

    Article  PubMed  Google Scholar 

  58. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2:342–50.

    Article  PubMed  Google Scholar 

  59. Ishimi Y, Okayasu I, Kato C, Kwon HJ, Kimura H, Yamada K, Song SY. Enhanced expression of Mcm proteins in cancer cells derived from uterine cervix. Eur J Biochem. 2003;270:1089–101.

    Article  PubMed  Google Scholar 

  60. Murphy N, Ring M, Heffron CC, King B, Killalea AG, Hughes C, Martin CM, McGuinness E, Sheils O, O’Leary JJ. p16INK4A, CDC6, and MCM5: predictive biomarkers in cervical preinvasive neoplasia and cervical cancer. J Clin Pathol. 2005;58:525–34.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Murphy N, Ring M, Killalea AG, Uhlmann V, O’Donovan M, Mulcahy F, Turner M, McGuinness E, Griffin M, Martin C, Sheils O, O’Leary JJ. p16INK4A as a marker for cervical dyskaryosis: CIN and cGIN in cervical biopsies and ThinPrep smears. J Clin Pathol. 2003;56:56–63.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Kumar D, Verma M. Molecular markers of cervical squamous cell carcinoma. CME J Gynecol Oncol. 2006;11:41–60.

    Google Scholar 

  63. Cheng Q, Lau WM, Chew SH, Ho TH, Tay SK, Hui KM. Identification of molecular markers for the early detection of human squamous cell carcinoma of the uterine cervix. Br J Cancer. 2002;86:274–81.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, Somerfield MR, Hayes DF, Bast Jr RC. American Society of Clinical Oncology. American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–312.

    Article  PubMed  Google Scholar 

  65. Borgoño CA, Grass L, Soosaipillai A, Yousef GM, Petraki CD, Howarth DH, Fracchioli S, Katsaros D, Diamandis EP. Human kallikrein 14: a new potential biomarker for ovarian and breast cancer. Cancer Res. 2003;63:9032–41.

    PubMed  Google Scholar 

  66. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–70.

    Article  PubMed  Google Scholar 

  67. Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360:790–800.

    Article  PubMed  Google Scholar 

  68. Jing F, Zhang J, Tao J, Zhou Y, Jun L, Tang X, Wang Y, Hai H. Hypermethylation of tumor suppressor genes BRCA1, p16 and 14-3-3sigma in serum of sporadic breast cancer patients. Onkologie. 2007;30:14–9.

    Article  PubMed  Google Scholar 

  69. Banerjee HN, Verma M. Use of nanotechnology for the development of novel cancer biomarkers. Expert Rev Mol Diagn. 2006;6:679–83.

    Article  PubMed  Google Scholar 

  70. Gupta S, Bent S, Kohlwes J. Test characteristics of alpha-fetoprotein for detecting hepatocellular carcinoma in patients with hepatitis C. A systematic review and critical analysis. Ann Intern Med. 2003;139:46–50.

    Article  PubMed  Google Scholar 

  71. Liebman HA, Furie BC, Tong MJ, Blanchard RA, Lo KJ, Lee SD, Coleman MS, Furie B. Des-gamma-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma. N Engl J Med. 1984;310:1427–31.

    Article  PubMed  Google Scholar 

  72. Wang SS, Lu RH, Lee FY, Chao Y, Huang YS, Chen CC, Lee SD. Utility of lentil lectin affinity of alpha-fetoprotein in the diagnosis of hepatocellular carcinoma. J Hepatol. 1996;25:66–71.

    Article  Google Scholar 

  73. Block TM, Comunale MA, Lowman M, Steel LF, Romano PR, Fimmel C, Tennant BC, London WT, Evans AA, Blumberg BS, Dwek RA, Mattu TS, Mehta AS. Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proc Natl Acad Sci U S A. 2005;102:779–84.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Zhu ZW, Friess H, Wang L, Abou-Shady M, Zimmermann A, Lander AD, Korc M, Kleeff J, Büchler MW. Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders. Gut. 2001;48:558–64.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Catalona WJ, Partin AW, Slawin KM, Brawer MK, Flanigan RC, Patel A, Richie JP, deKernion JB, Walsh PC, Scardino PT, Lange PH, Subong EN, Parson RE, Gasior GH, Loveland KG, Southwick PC. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA. 1998;279:1542–7.

    Article  PubMed  Google Scholar 

  76. Gaylis FD, Keer HN, Wilson MJ, Kwaan HC, Sinha AA, Kozlowski JM. Plasminogen activators in human prostate cancer cell lines and tumors: correlation with the aggressive phenotype. J Urol. 1989;142:193–8.

    PubMed  Google Scholar 

  77. Ivanovic V, Melman A, Davis-Joseph B, Valcic M, Geliebter J. Elevated plasma levels of TGF-beta 1 in patients with invasive prostate cancer. Nat Med. 1995;1:282–4.

    Article  PubMed  Google Scholar 

  78. Kattan MW, Shariat SF, Andrews B, Zhu K, Canto E, Matsumoto K, Muramoto M, Scardino PT, Ohori M, Wheeler TM, Slawin KM. The addition of interleukin-6 soluble receptor and transforming growth factor beta1 improves a preoperative nomogram for predicting biochemical progression in patients with clinically localized prostate cancer. J Clin Oncol. 2003;21:3573–9.

    Article  PubMed  Google Scholar 

  79. Paul B, Dhir R, Landsittel D, Hitchens MR, Getzenberg RH. Detection of prostate cancer with a blood-based assay for early prostate cancer antigen. Cancer Res. 2005;65:4097–100.

    Article  PubMed  Google Scholar 

  80. Reiter RE, Gu Z, Watabe T, Thomas G, Szigeti K, Davis E, Wahl M, Nisitani S, Yamashiro J, Le Beau MM, Loda M, Witte ON. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci U S A. 1998;95:1735–40.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM. Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res. 2002;62:4427–33.

    PubMed  Google Scholar 

  82. Shariat SF, Lamb DJ, Kattan MW, Nguyen C, Kim J, Beck J, Wheeler TM, Slawin KM. Association of preoperative plasma levels of insulin-like growth factor I and insulin-like growth factor binding proteins-2 and -3 with prostate cancer invasion, progression, and metastasis. J Clin Oncol. 2002;20:833–41.

    Article  PubMed  Google Scholar 

  83. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419:624–9.

    Article  PubMed  Google Scholar 

  84. Srivastava S, Verma M, Gopal-Srivastava R. Proteomic maps of the cancer-associated infectious agents. J Proteome Res. 2005;4:1171–80.

    Article  PubMed  Google Scholar 

  85. McLaughlin-Drubin ME, Munger K. Viruses associated with human cancer. Biochim Biophys Acta. 2008;1782:127–50.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Zaravinos A. An updated overview of HPV-associated head and neck carcinomas. Oncotarget. 2014;5(12):3956–69.

    PubMed Central  PubMed  Google Scholar 

  87. Taneja S, Sen S, Gupta VK, Aggarwal R, Jameel S. Plasma and urine biomarkers in acute viral hepatitis E. Proteome Sci. 2009;7:39–40.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Boxus M, Willems L. Mechanisms of HTLV-1 persistence and transformation. Br J Cancer. 2009;101:1497–501.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Yin M, Hu Z, Tan D, Ajani JA, Wei Q. Molecular epidemiology of genetic susceptibility to gastric cancer: focus on single nucleotide polymorphisms in gastric carcinogenesis. Am J Transl Res. 2009;1:44–54.

    PubMed Central  PubMed  Google Scholar 

  90. Suerbaum S, Michetti P. Helicobacter pylori infection. N Engl J Med. 2002;347:1175–86.

    Article  PubMed  Google Scholar 

  91. Streckfus CF, Bigler LR. Saliva as a diagnostic fluid. Oral Dis. 2002;8:69–76.

    Article  PubMed  Google Scholar 

  92. Malathi N, Mythili S, Vasanthi HR. Salivary diagnostics: a brief review. ISRN Dentistry 201. http://dx.doi.org/10.1155/2014/158786.

  93. Greenberg BL, Glick M, Frantsve-Hawley J, Kantor ML. Dentists’ attitudes toward chairside screening for medical conditions. JADA. 2010;141(1):52–62.

    PubMed  Google Scholar 

  94. Bonne NJ, Wong DTW. Salivary biomarker development using genomic, proteomic and metabolomics approaches. Genome Med. 2012;4(10):82.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Gao K, Zhou H, Zhang L, et al. Systemic disease-induced salivary biomarker profiles in mouse models of melanoma and non-small cell lung cancer. PLoS One. 2009;4(6):e5875. doi:10.1371/journal.pone.0005875.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Lau CS, Wong DT. Breast cancer exosomes-like microvesicles and salivary gland cells interplay alters salivary gland cell-derived exosome-like microvesicles in vivo. PLoS One. 2012;7(3):e33o37. doi:10.1371/journal.pone.0033037.

    Google Scholar 

  97. Federal Rules of Evidence, Pub. L. 93–593, 88 Stat. 1926, 28 U.S.C. app. 1976.

    Google Scholar 

  98. Daubert v. Merrell Dow Pharmaceuticals Inc., 509 U.S. 579, 1993.

    Google Scholar 

  99. Knott C, Reynolds F. Citrate and salivary drug measurement. Lancet. 1987;1:97.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalu U. E. Ogbureke BDS, MSc, DMSc, JD, FDSRCS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ogbureke, K.U.E., Ogbureke, E.I. (2015). The History of Salivary Diagnostics. In: Streckfus, C. (eds) Advances in Salivary Diagnostics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45399-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45399-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45398-8

  • Online ISBN: 978-3-662-45399-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics