Skip to main content

Biofertilizers with Arbuscular Mycorrhizal Fungi in Agriculture

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 41))

Abstract

An increase in crop production is essential to meet the future food demand. Agricultural systems should be sustained by maintaining soil fertility and soil structure by effective use of fertilizers with increased profitability and reduced harm to the environment. Other strategies involve application of ecological concepts and principles to the design, development, and management of sustainable agricultural systems. Microbial inoculants, including arbuscular mycorrhizal (AM) fungi and plant growth-promoting rhizobacteria, for increasing the efficient use of fertilizers are potential components of such management. AM fungal inoculants have been marketed as an important biological component to the commercial horticulture and agriculture. This review considers biofertilizers within the framework of fertilizer demand and use of AM fungal inocula.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott LK, Murphy DV (2007) What is biological fertility? In: Abbott LK, Murphy DV (eds) Soil biological fertility: a key to sustainable land use in agriculture. Springer, Dordrecht, pp 1–15

    Google Scholar 

  • Abbott LK, Robson AD, Gazey C (1992) Selection of inoculant vesicular-arbuscular mycorrhizal fungi. In: Norris JD, Read DJ, Varma AK (eds) Methods in microbiology, vol 24. Academic Press, London, pp 1–21

    Google Scholar 

  • Adesemoye O, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Akhtar SM, Siddiqui ZA (2008) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 61–97

    Chapter  Google Scholar 

  • Allen MF (1996) The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peek into 21st. Mycol Res 100:769–782

    Article  Google Scholar 

  • Antunes PM, Koch AM, Dunfield KE, Hart MM, Downing A, Rillig MC, Klironomos JN (2009) Influence of commercial inoculation with Glomus intraradices on the structure and functioning of an AM fungal community from an agricultural site. Plant Soil 317:257–266

    Article  CAS  Google Scholar 

  • Antunes PM, Koch AM, Morton JB, Rillig MC, Klironomos JN (2011) Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol 189:507–514

    Article  PubMed  Google Scholar 

  • Aseri GK, Jain N, Panwar J, Rao VA, Meghwal PR (2008) Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of Pomegranate (Punica granatum L.) in Indian Thar Desert. Sci Hortic 117:130–135

    Article  Google Scholar 

  • Baar J (2008) From production to application of arbuscular mycorrhizal fungi in agricultural systems: requirements and needs. In: Varma A (ed) Mycorrhiza. Springer, Heidelberg, pp 361–372

    Chapter  Google Scholar 

  • Bainard LD, Klironomos JN, Gordon AM (2011) Arbuscular mycorrhizal fungi in tree-based intercropping systems: a review of their abundance and diversity. Pedobiologia 54:57–61

    Article  Google Scholar 

  • Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro-Fernández C, Lopéz-García A, Estrada B, Azcón R, Ferrol N, Azcón-Aguilar C (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301. doi:10.1016/j.jaridenv.2011.06.001

    Article  Google Scholar 

  • Boonlue S, Surapat W, Pukahuta C, Suwanarit P, Suwanatit A, Morinaga T (2012) Diversity and efficiency of arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens) farms. Mycoscience 53:10–16

    Article  Google Scholar 

  • Bothe H, Turnau K, Regvar M (2010) The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza 20:445–457

    Article  PubMed  Google Scholar 

  • Brito I, Goss MJ, Carvalho M, van Tuinen Y, Antunes PM (2008) Agronomic management of indigenous mycorrhizas. In: Varma A (ed) Mycorrhiza. Springer, Heidelberg, pp 375–402

    Chapter  Google Scholar 

  • Brito I, Carvalho MD, Goss MJ (2011) Summer survival of arbuscular mycorrhiza extraradical mycelium and the potential for its management through tillage options in Mediterranean cropping systems. Soil Use Manag 27:350–356

    Google Scholar 

  • Bull CT, Muramoto J, Koike ST, Leap J, Shennan C, Goldman P (2005) Strawberry cultivars and mycorrhizal inoculants evaluated in California organic production fields. Crop Manag 4(1). doi: 10.1094/CM-2005-0527-02-RS

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Cardoso EJBN, Cardoso IM, Nogueira MA, Baretta CRDM, Paula AM (2010) Micorrizas arbusculares na aquisição de nutrientes pelas plantas. In: Siqueira JO, de Souza FA, Cardoso EJBN, Tsai SM (eds) Micorrizas: 30 anos de experiência no Brasil. Universidade Federal de Lavras (UFLA), Lavras, pp 153–214

    Google Scholar 

  • Corkidi L, Allen EB, Merhaut D, Allen MF, Downer J, Bohn J, Evans M (2004) Assessing the infectivity of commercial mycorrhizal inoculants in plant nursery conditions. J Environ Hortic 22:149–154

    Google Scholar 

  • Cuenca G, Cáceres A, González MG (2008) AM inoculation in tropical agriculture: field results. In: Varma A (ed) Mycorrhiza. Springer, Heidelberg, pp 403–417

    Chapter  Google Scholar 

  • Das A, Varma A (2009) Symbiosis: the art of living. In: Varma A, Kharkwal AC (eds) Symbiotic fungi, soil biology, vol 18. Springer, Heidelbereg, pp 1–28

    Chapter  Google Scholar 

  • Djuuna IAF, Abbott LK, Solaiman ZM (2009) Use of mycorrhiza bioassays in ecological studies. In: Varma A, Kharkwal AC (eds) Symbiotic fungi, soil biology, vol 18. Springer, Heidelberg, pp 41–50

    Chapter  Google Scholar 

  • Douds DD Jr, Nagahashi G, Hepperly PR (2010) On-farm production of inoculum of indigenous arbuscular mycorrhizal fungi and assessment of diluents of compost for inoculum production. Bioresour Technol 101:2326–2330

    Article  CAS  PubMed  Google Scholar 

  • Duan T, Facelli E, Smith SE, Smith FA, Nan Z (2011) Differential effects of soil disturbance and plant residue retention on function of arbuscular mycorrhizal (AM) symbiosis are not reflected in colonization of roots or hyphal development in soil. Soil Biol Biochem 43:571–578

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • FAO (Food and Agriculture Organization) of the United Nations (2010) Current world fertilizer trends and outlook to 2014. Available at: ftp://ftp.fao.org/ag/agp/docs/cwfto14.pdf. Accessed 22 July 2011

  • Farmer MA, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V, van Tuinen D (2007) Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol 35:599–609

    Article  Google Scholar 

  • Gentili F, Jumpponen A (2006) Potential and possible uses of bacterial and fungal biofertilizers. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 1–28

    Google Scholar 

  • Gogoi P, Singh RP (2011) Differential effect of some arbuscular mycorrhizal fungi on growth of Piper longum L. (Piperaceae). Indian J Sci Technol 4:119–125

    Google Scholar 

  • Grace EJ, Smith FA, Smith SE (2009) Deciphering the arbuscular mycorrhizal pathway of P uptake in non-responsive plant species. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas – functional processes and ecological impact. Springer, Heidelberg, pp 89–106

    Chapter  Google Scholar 

  • Herrera-Peraza RA, Hamel C, Fernández F, Ferrer RL, Furrazola E (2011) Soil-strain compatibility: the key to effective use of arbuscular mycorrhizal inoculants? Mycorrhiza 21:183–193

    Article  PubMed Central  PubMed  Google Scholar 

  • IJdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16

    Article  CAS  PubMed  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    Article  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488

    Article  CAS  Google Scholar 

  • Javaid A (2010) Beneficial microorganisms for sustainable agriculture. In: Lichtfouse L (ed) Genetic engineering, biofertilisation, soil quality and organic farming, sustainable agriculture. Springer, New York, pp 347–369

    Chapter  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  CAS  PubMed  Google Scholar 

  • Kabir Z, O’Halloran IP, Fyles JW, Hamel C (1997) Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: hyphal density and mycorrhizal root colonization. Plant Soil 192:282–293

    Article  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M (2009) Contribution of arbuscular mycorrhiza to soil quality in contrasting cropping systems. Agric Ecosyst Environ 134:36–45

    Article  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M (2012) Plant-available P supply is not the main factor determining the benefit from arbuscular mycorrhiza to crop P nutrition and growth in contrasting cropping systems. Plant Soil 350:85–98

    Article  CAS  Google Scholar 

  • Kaya KC, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6

    Article  CAS  Google Scholar 

  • Killham K (2011) Integrated soil management—moving towards globally sustainable agriculture. J Agric Sci 149:29–36

    Article  Google Scholar 

  • Lichtfouse E, Navarrete M, Debaeke P, Souchère V, Alberola C, Ménassieu J (2009) Agronomy for sustainable agriculture: a review. Agron Sustain Dev 29:1–6

    Article  Google Scholar 

  • Mardukhi B, Rejali F, Daei G, Ardakani MR, Malakouti MJ, Miransari M (2011) Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. C R Biol 334:564–571

    Article  CAS  PubMed  Google Scholar 

  • Marin M (2006) Arbuscular mycorrhizal inoculation in nursery practice. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 289–324

    Google Scholar 

  • Martinez TN, Johnson NC (2010) Agricultural management influences propagule densities and functioning of arbuscular mycorrhizas in low- and high-input agroecosystems in arid environments. Appl Soil Ecol 46:300–306

    Article  Google Scholar 

  • Mihov M, Tringovska I (2010) Energy efficiency improvement of greenhouse tomato production by applying new biofertilizers. Bulg J Agric Sci 16:454–458

    Google Scholar 

  • Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930

    Article  CAS  PubMed  Google Scholar 

  • Murphy DV, Stockdale EA, Brookes PC, Gouling KWT (2007) Impact of microorganisms on chemical transformations in soil. In: Abbott LK, Murphy DV (eds) Soil biological fertility: a key to sustainable land use in agriculture. Springer, Dordrecht, pp 37–59

    Google Scholar 

  • Ngwene B, George E, Claussen W, Neumann E (2010) Phosphorus uptake by cowpea plants from sparingly available or soluble sources as affected by nitrogen form and arbuscular-mycorrhiza-fungalinoculation. J Plant Nutr Soil Sci 173:353–359

    Article  CAS  Google Scholar 

  • Öpik M, Saks Ü, Kennedy J, Daniell T (2008) Global diversity patterns of arbuscular mycorrhizal fungi–community composition and links with functionality. In: Varma A (ed) Mycorrhiza. Springer, Heidelberg, pp 89–111

    Chapter  Google Scholar 

  • Osorio NW, Habte M (2009) Strategies for utilizing arbuscular mycorrhizal fungi and phosphate-solubilizing microorganisms for enhanced phosphate uptake and growth of plants in the soils of the tropics. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Heidelberg, pp 325–351

    Chapter  Google Scholar 

  • Pellegrino E, Bedini S, Avio L, Bonari E, Giovannetti M (2011) Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biol Biochem 43:367–376

    Article  CAS  Google Scholar 

  • Perner H, Schwarz D, Bruns C, Mäder P, George E (2007) Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17:469–474

    Article  PubMed  Google Scholar 

  • Reis VM, Andrade G, Faria SM, Silveira APD (2010) Interações de fungos micorrízicos arbusculares com outros microrganismos do solo. In: Siqueira JO, de Souza FA, Cardoso EJBN, Tsai SM (eds) Micorrizas: 30 anos de experiência no Brasil. Universidade Federal de Lavras (UFLA), Lavras, pp 361–413

    Google Scholar 

  • Rodriguez-Romero AS, Azcón R, Jaizme-Vega MDC (2011) Early mycorrhization of two tropical crops, papaya (Carica papaya L.) and pineapple [Ananas comosus (L.) Merr.], reduces the necessity of P fertilization during the nursery stage. Fruits 66:3–10

    Article  Google Scholar 

  • Rouphael Y, Cardarelli M, Mattia ED, Tullio M, Rea R, Colla G (2010) Enhancement of alkalinity tolerance in two cucumber genotypes inoculated with an arbuscular mycorrhizal biofertilizer containing Glomus intraradices. Biol Fertil Soils 46:499–509

    Article  Google Scholar 

  • Saldajeno MGB, Chandanie WA, Kubota M, Hyakumachi AM (2008) Effects of interactions of arbuscular mycorrhizal fungi and beneficial mycoflora on plant growth and disease protection. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 211–226

    Chapter  Google Scholar 

  • Shabani G, Ardakani MR, Chaichi MR, Friedel JK, Khavazi K, Eshghizaderh HR (2011) Effect of different fertilizing systems on seed yield and phosphorus uptake in annual medics under dryland farming conditions. Not Bot Hort Agrobot Cluj 39:191–197

    CAS  Google Scholar 

  • Shalamuk S, Cabello MH, Chidichimo H, Golik S (2011) Effects of inoculation with Glomus mosseae in conventionally tilled and nontilled soils with different levels of nitrogen fertilization on wheat growth, arbuscular mycorrhizal colonization, and nitrogen nutrition. Commun Soil Sci Plant Anal 42:586–598

    Article  Google Scholar 

  • Sharma MP, Adholeya A (2011) Developing prediction equations and optimizing production of three AM fungal inocula under on-farm conditions. Exp Agric 47:529–537

    Article  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems, vol 224. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), Eschborn. ISBN 3-88085-462-9

    Google Scholar 

  • Siqueira JO, Saggin-Júnior OS, Flores-Aylas WF, Guimarães PTG (1998) Arbuscular mycorrhizal inoculation and superphosphate application influence plant development and yield of coffee in Brazil. Mycorrhiza 7:293–300

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of Arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Solaiman MZ, Abbott LK (2004) Functional diversity of arbuscular mycorrhizal fungi on root surfaces. In: Varma A, Abbott LK, Werner D, Hampp R (eds) Plant Surface Microbiology. Springer, Heidelberg, pp 331–349

    Google Scholar 

  • Song YY, Zen RS, Xu JF, Li J, Shen X, Yihdego WG (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS One 5(10):e13324

    Article  PubMed Central  PubMed  Google Scholar 

  • Stürmer SL, Saggin O Jr (2010) Bancos de germoplasma de Glomeromycota no Brasil. In: Siqueira JO, de Souza FA, Cardoso EJBN, Tsai SM (eds) Micorrizas: 30 anos de experiência no Brasil. Universidade Federal de Lavras (UFLA), Lavras, pp 525–550

    Google Scholar 

  • Tanu Prakash A, Adholeya A (2006) Potential of arbuscular mycorrhizae in organic farming system. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 223–239

    Google Scholar 

  • Tarbell TJ, Koske RE (2007) Evaluation of commercial arbuscular mycorrhizal inocula in a sand/peat medium. Mycorrhiza 18:51–56

    Article  CAS  PubMed  Google Scholar 

  • Thonar C, Shnepf A, Frossard E, Roose T, Jansa J (2011) Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339:231–245

    Article  CAS  Google Scholar 

  • Trejo D, Ferrera-Cerrato R, Garcia R, Varela L, Lara L, Alarcon A (2011) Efectividad de siete consorcios nativos de hongos micorrízicos arbusculares en plantas de café en condiciones de invernadero y campo. Rev Chil Hist Nat 84:23–31

    Article  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vázquez-Hernández MV, Arévalo-Galarza L, Jaen-Contreras D, Escamilla-García JD, Mora-Aguilera A, Hernández-Castro E, Cibrián-Tovar J, Téliz-Ortiz D (2011) Effect of Glomus mosseae and Entrophospora colombiana on plant growth, production, and fruit quality of ‘Maradol’ papaya (Carica papaya L.). Sci Hortic 128:255–260

    Article  Google Scholar 

  • Vestberg M, Kahiluoto H, Wallius E (2011) Arbuscular mycorrhizal fungal diversity and species dominance in a temperate soil with long-term conventional and low-input cropping systems. Mycorrhiza 21:351–361

    Article  PubMed  Google Scholar 

  • Vosátka M, Albrechtová J (2008) The international market development for mycorrhizal technology. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Heidelberg, pp 419–438

    Chapter  Google Scholar 

  • Vosátka M, Albrechtova J (2009) Benefits of arbuscular mycorrhizal fungi to sustainable crop production. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Heidelberg, pp 205–225

    Chapter  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  PubMed  Google Scholar 

  • Weber OB, Souza CCM, Gondin DMF, Oliveira FNS, Crisóstomo LA, Caproni AL, Saggin O Jr (2004) Inoculação de fungos micorrízicos arbusculares e adubação fosfatada em mudas de cajueiro-anão-precoce. Pesq agropec bras 39(5):477–483

    Article  Google Scholar 

  • Wiseman PE, Colvin KH, Wells CE (2009) Performance of mycorrhizal products marketed for woody landscape plants. J Environ Hortic 27:41–50

    Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Yang C, Hamel C, Schellenberg MP, Perez JC, Berbara RL (2010) Diversity and functionality of arbuscular mycorrhizal fungi in three plant communities in semiarid grasslands national park, Canada. Microb Ecol 59:724–733

    Article  PubMed  Google Scholar 

  • Yao Q, Wanga LR, Zhu HH, Chen JZ (2009) Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Sci Hortic 121:458–461

    Article  Google Scholar 

  • Zarabi M, Alahdadi I, Akbari GA, Akbari GA (2011) A study on the effects of different biofertilizer combinations on yield, its components and growth indices of corn (Zea mays L.) under drought stress condition. Afr J Res 6:681–685

    Google Scholar 

Download references

Acknowledgments

This manuscript was prepared in part with support from project AUX-PE-PGGI 267/2010 from the Coordination of Improvement of Higher Education Personnel (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olmar B. Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weber, O.B. (2014). Biofertilizers with Arbuscular Mycorrhizal Fungi in Agriculture. In: Solaiman, Z., Abbott, L., Varma, A. (eds) Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45370-4_4

Download citation

Publish with us

Policies and ethics