Skip to main content

Contribution of Dynamics of Root Colonisation by Arbuscular Mycorrhizal Communities to Ecosystem Function

  • Chapter
  • First Online:
Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration

Part of the book series: Soil Biology ((SOILBIOL,volume 41))

Abstract

Root colonisation by communities of arbuscular mycorrhizal (AM) fungi is a dynamic process. It is dependent on characteristics of the forms of the fungi which occur in soil and inside roots and on the root structure and root growth rates. Mycorrhiza formation is also dependent on factors which influence inoculum potential of each AM fungus present which in turn is influenced by root colonisation levels, infectivity of hyphae, interactions with other organisms, interactions with soil particles and interactions among the AM fungi themselves. AM fungi differ in a manner in which they colonise roots, in their capacity to form propagules, in their tolerance of environmental conditions and their competitive ability. The dynamics of root colonisation by communities of AM fungi is also controlled by the host plant through the availability of carbon substrates needed for fungal growth as well as interactions with neighbouring plants. The links between the diversity and dynamics of communities of AM fungi within roots and ecosystem function are difficult to discern based on current approaches to assessing mycorrhizal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK (1982) Comparative anatomy of vesicular-arbuscular mycorrhizas formed on subterranean clover. Aust J Bot 30:485–499

    Article  Google Scholar 

  • Abbott LK, Gazey C (1994) An ecological view of the formation of VA mycorrhizas. Plant Soil 159:69–78

    Google Scholar 

  • Abbott LK, Robson AD, De Boer G (1984) The effect of phosphorus on the formation of hyphae in soil by the vesicular arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytol 97:437–446

    Article  CAS  Google Scholar 

  • Abbott LK, Robson AD, Gazey C (1992) Selection of inoculant vesicular-arbuscular mycorrhizal fungi. In: Norris JR, Read DJ, Varma AK (eds) Techniques for mycorrhizal research. Academic Press, London, pp 1–21

    Google Scholar 

  • Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62

    Article  CAS  Google Scholar 

  • Anderson AJ (1992) The influence of the plant root on mycorrhizal formation. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, NY, pp 37–64

    Google Scholar 

  • Andrade G, Linderman RG, Bethlenfalvay GJ (1998) Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant Soil 202:79–87

    Article  CAS  Google Scholar 

  • Balaji B, Poulin MJ, Vierheilig H, Pichié Y (1995) Responses of an arbuscular mycorrhizal fungus, Gigaspora margarita, to exudates and volatiles from the Ri T-DNA transformed roots of nonmycorrhizal and mycorrhizal mutants of Pisum sativum L Sparkle. Exp Ecol 19:275–283

    CAS  Google Scholar 

  • Baylis GTS (1970) Root hairs and phycomycetous mycorrhizas in phosphorus deficient soil. Plant Soil 33:713–716

    Article  Google Scholar 

  • Bell J, Wells S, Jasper DA, Abbott LK (2003) Field inoculation with arbuscular mycorrhizal fungi in rehabilitation of mine sites with native vegetation, including Acacia spp. Aust J Syst Bot 16:131–138

    Article  Google Scholar 

  • Bellgard SE (1993) The topsoil as the major store of the propagules of vesicular-arbuscular mycorrhizal fungi in southeast Australian sandstone soils. Mycorrhiza 3:19–24

    Article  Google Scholar 

  • Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J Ecol 84:71–82

    Article  Google Scholar 

  • Bonfante-Fasolo P, Vian B (1989) Cell wall architecture in mycorrhizal roots of Allium porrum L. Annales des Sciences Naturelles-Botanique et Biologie Vegetale 10:97–109

    Google Scholar 

  • Bowen G (1987) The biology and physiology of infection and its development. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, FL, pp 27–57

    Google Scholar 

  • Brundrett MC, Abbott LK (1991) Roots of jarrah forest plants. I. Mycorrhizal associations of shrubs and herbaceous plants. Aust J Bot 39:445–457

    Article  Google Scholar 

  • Brundrett MC, Abbott LK (1994) Mycorrhizal fungus propagules in the jarrah forest. I. Seasonal study of inoculum levels. New Phytol 127:539–546

    Article  Google Scholar 

  • Brundrett MC, Abbott LK (1995) Mycorrhizal fungus propagules in the jarrah forest. II. Spatial variability in inoculum levels. New Phytol 131:461–469

    Article  Google Scholar 

  • Brundrett MC, Kendrick B (1988) The mycorrhizal status, root anatomy and phenology of plants in a sugar maple forest. Can J Bot 66:1153–1173

    Article  Google Scholar 

  • Brundrett MC, Piche Y, Peterson RL (1984) A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can J Bot 62:2128–2134

    Article  Google Scholar 

  • Brundrett MC, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR Monograph 32

    Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter FH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259–265

    Article  Google Scholar 

  • Crush JR (1974) Plant growth response to vesicular arbuscular mycorrhiza. VII. Growth and nodulation of some herbage legumes. New Phytol 73:743–749

    Article  CAS  Google Scholar 

  • Cuenca G, Lovera M (1991) Vesicular arbuscular-mycorrhizae in disturbed and revegetated sites from La Gran Sabana, Venezuela. Can J Bot 70:73–79

    Article  Google Scholar 

  • Cuenca G, De Andrade Z, Escalante G (1998) Diversity of glomalean spores from natural, disturbed and revegetated communities growing on nutrient-poor tropical soils. Soil Biol Biochem 30:711–719

    Article  CAS  Google Scholar 

  • Dickson S (2004) The Arum-Paris continuum of mycorrhizal symbioses. New Phytol 163:187–200

    Article  Google Scholar 

  • Dodd JC, Dougall TA, Clapp JP, Jeffries P (2002) The role of arbuscular mycorrhizal fungi in plant community establishment at Samphire Hoe, Kent, UK – the reclamation platform created during the building of the Channel tunnel between France and UK. Biodivers Conserv 11:39–58

    Article  Google Scholar 

  • Douds DD, Schenck NC (1990) Relationship of colonisation and sporulation by VA mycorrhizal fungi to plant nutrient and carbohydrate contents. New Phytol 116:621–627

    Article  CAS  Google Scholar 

  • Elias KS, Safir GR (1987) Hyphal elongation of Glomus fasciculatus in response to root exudates. Appl Environ Microbiol 53:1928–1933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fitter AH, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132

    Google Scholar 

  • Fitter AH, Merryweather JW (1992) Why are some plants more mycorrhizal than others? An ecological enquiry. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. C.A.B. International/University Press, Cambridge, pp 26–36

    Google Scholar 

  • Franke-Snyder M, Douds DD, Galvez L, Phillips JG, Wagoner P, Drinkwater L, Morton JB (2001) Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol 16:35–48

    Article  Google Scholar 

  • Gaur A, Adholeya A, Mukerji KG (1998) A comparison of AM inoculants using Capsicum and Polianthes in marginal soil amended with organic matter. Mycorrhiza 7:307–312

    Article  Google Scholar 

  • Gazey C, Abbott LK, Robson AD (1992) The rate of development of mycorrhizas affects the onset of sporulation and production of external hyphae by two species of Acaulospora. Mycol Res 96:643–650

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Branzati B, Gianinazzi S (1990) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255

    Google Scholar 

  • Giovanetti M, Avio L, Sbrana C, Citernesi AS (1993) Factors affecting appressorium development in the vesicular arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd & Trappe. New Phytol 123:114–122

    Google Scholar 

  • Graham JH (1982) Effects of citrus root exudates on germination of chlamydospores of the vesicular-arbuscular fungus Glomus epigaeum. Mycologia 74:831–835

    Article  Google Scholar 

  • Graham JH, Abbott LK (2000) Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant Soil 220:207–218

    Article  CAS  Google Scholar 

  • Hamel C, Dalpe Y, Furlan V, Parent S (1997) Indigenous population of arbuscular mycorrhizal fungi and soil aggregate stability are major determinants of leek (Allium porrum L.) response to inoculation with Glomus intraradices Schenk and Smith or Glomus versiforme (Karsten) Berch. Mycorrhiza 74:187–196

    Article  Google Scholar 

  • Helgason T, Fitter AH, Young JPW (1999) Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides non-scripta (bluebell) in a semi-natural woodland. Mol Ecol 8:659–666

    Article  CAS  Google Scholar 

  • Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384

    Article  Google Scholar 

  • Hetrick BAD (1991) Mycorrhizas and root architecture. Experientia 47:355–361

    Article  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Holland TC, Bowen P, Bogdanoff C, Hart MM (2014) How distinct are arbuscular mycorrhizal fungal communities associating with grapevines? Biol Fertil Soils 50:667–674

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Janos DP (1980) Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology 61:151–162

    Article  Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Article  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989a) Acacias respond to additions of phosphorus and to inoculation with VA mycorrhizal fungi in soils stockpiled during mineral sand mining. Plant Soil 115:99–108

    Article  CAS  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989b) The loss of VA mycorrhizal infectivity during bauxite mining may limit the growth of Acacia pulchella R.Br. Aust J Bot 37:33–42

    Article  Google Scholar 

  • Jasper DA, Robson AD, Abbott LK (1989c) Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytol 112:93–99

    Article  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1991) The effect of soil disturbance on vesicular-arbuscular fungi in soils from different vegetation types. New Phytol 118:471–476

    Article  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1992) Soil disturbance in native ecosystems – the decline and recovery of infectivity of VA mycorrhizal fungi. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford

    Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1993) The survival of infective hyphae of vesicular-arbuscular mycorrhizal fungi in dry soil: an interaction with sporulation. New Phytol 124:473–479

    Article  Google Scholar 

  • Kabir Z, O’Halloran IP, Fyles JW, Hamel C (1997) Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: Hyphal density and mycorrhizal root colonization. Plant Soil 192:282–293

    Article  Google Scholar 

  • Kohout P, Sudová R, JanouÅ¡ková M, ÄŒtvrtlíková M, Hejda M, Pánková H, Slavíková R, Å tajerová K, Vosátka M, Sýkorová Z (2013) Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: is there a universal solution? Soil Biol Biochem 68:482–493

    Article  Google Scholar 

  • Koide RT (2000) Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytol 147:233–235

    Article  Google Scholar 

  • Koske RE, Gemma JN (1992) Fungal reactions to plant prior to mycorrhizal formation. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, London, pp 3–36

    Google Scholar 

  • Linderman RG (1992) Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA Special Publication no 54, pp 29–70

    Google Scholar 

  • Merryweather J, Fitter A (1991) A modified method for elucidating the structure of the fungal partner in a vesicular-arbuscular mycorrhiza. Mycol Res 95:1435–1437

    Article  Google Scholar 

  • Merryweather J, Fitter AH (1998a) The arbuscular mycorrhizal fungi of Hyacinthoides non scripta. I. Diversity of fungal taxa. New Phytol 138:117–129

    Article  Google Scholar 

  • Merryweather J, Fitter AH (1998b) The arbuscular mycorrhizal fungi of Hyacinthoides non scripta. II. Seasonal and spatial patterns of fungal populations. New Phytol 138:131–142

    Article  Google Scholar 

  • Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584

    Article  Google Scholar 

  • Moyersoen B, Fitter AH (1999) Presence of arbuscular mycorrhizas in typically ectomycorrhizal host species from Cameroon and New Zealand. Mycorrhiza 8:247–253

    Article  Google Scholar 

  • Nadian H, Smith SE, Alston AM, Murray RS, Siebert BD (1998) Effects of soil compaction on phosphorus uptake and growth of Trifolium subterraneum colonized by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol 139:155–165

    Article  Google Scholar 

  • Pearson JN, Schweiger P (1994) Scutellospora calospora (Nicol. & Gerd.) Walker and Sanders associated with subterranean clover produces non-infective hyphae during sporulation. New Phytol 127:697–701

    Article  Google Scholar 

  • Pearson JN, Abbott LK, Jasper DA (1994) Phosphorus, soluble carbohydrates and the competition between two arbuscular mycorrhizal fungi colonizing subterranean clover. New Phytol 127:101–106

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Powell CL (1980) Effect of phosphate fertilizers on the production of mycorrhizal inoculum in soil. NZ J Agric Res 23:216–223

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 474:376–390

    Article  Google Scholar 

  • Robinson-Boyer L, Grzyb I, Jeffries P (2009) Shifting the balance from qualitative to quantitative analysis of arbuscular mycorrhizal communities in field soils. Fungal Ecol 2:1–9

    Article  Google Scholar 

  • Rosendahl S, Sen R (1994) Isozyme analysis of mycorrhizal fungi and their mycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Techniques for mycorrhizal research. Academic Press, London, pp 629–654

    Google Scholar 

  • Saito M, Stribley DP, Hepper CM (1993) Succinate dehydrogenase activity of external and internal hyphae of a vesicular-arbuscular mycorrhizal fungus, Glomus mosseae (Nicol. & Gerd.) Gerdemann and Trappe during mycorrhizal colonization of roots of leek (Allium porrum L.), as revealed by in situ histochemical staining. Mycorrhiza 4:59–62

    Article  CAS  Google Scholar 

  • Sanchez-Castro I, Ferrol N, Cornejo P, Barea JM (2012) Temporal dynamics of arbuscular mycorrhizal fungi colonizing roots of representative shrub species in a semi-arid Mediterranean ecosystem. Mycorrhiza 22:449–460

    Article  PubMed  Google Scholar 

  • Scheltema MA, Abbott LK, Robson AD (1987) Seasonal variation in the infectivity of VA mycorrhizal fungi in annual pastures in a Mediterranean environment. Aust J Agric Res 38:707–715

    Article  Google Scholar 

  • Schenck NC, Smith GS (1982) Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effects on soybean at four soil temperatures. New Phytol 92:193–201

    Article  Google Scholar 

  • Schweiger PF, Robson AD, Barrow NJ (1995) Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytol 131:247–715

    Article  Google Scholar 

  • Shi P, Abbott LK, Banning NC, Zhao B (2012) Comparison of morphological and molecular genetic quantification of relative abundance of arbuscular mycorrhizal fungi within roots. Mycorrhiza 22:501–513

    Article  CAS  PubMed  Google Scholar 

  • Smilauer P (2001) Communities of arbuscular mycorrhizal fungi in grassland: seasonal variability and effects of environment and host plants. Folia Geobotanica 36:243–263

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, Cambridge

    Google Scholar 

  • Solaiman ZM, Abbott LK (2008) Influence of arbuscular mycorrhizal fungi, inoculum level and phosphorus placement on growth and phosphorus uptake of Phyllanthus calycinus in jarrah forest soil. Biol Fertil Soils 44:815–821

    Article  Google Scholar 

  • Srivastava D, Kapoor R, Srivastava SK, Mukerji KG (1996) Vesicular-arbuscular mycorrhiza – an overview. In: Mukerji KG (ed) Handbook of vegetation science: concepts in mycorrhizae research, vol 19/2. Kluwer, Academic Publishers, Netherland, pp 1–39

    Google Scholar 

  • Tamasloukht M, Sejalon-Delmas N, Kluever A, Jauneau A, Roux C, Becard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tisserant B, Brenac V, Requena N, Jeffries P, Dodd JC (1998) The detection of Glomus spp (arbuscular mycorrhizal fungi) forming mycorrhizas in three plants, at different stages of seedling development, using mycorrhiza-specific isoenzymes. New Phytol 138:225–239

    Article  CAS  Google Scholar 

  • Tommerup IC (1983) Spore dormancy in vesicular arbuscular mycorrhizal fungi. Trans Br Mycol Soc 81:37–45

    Article  Google Scholar 

  • Tommerup IC, Abbott LK (1981) Prolonged survival and viability of VA mycorrhizal hyphae after root death. Soil Biol Biochem 13:431–434

    Article  Google Scholar 

  • Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza 10:169–174

    Article  CAS  Google Scholar 

  • Vogt K, Asbjornsen H, Ercelawn A, Montagnini F, Valdes M (1997) Roots and mycorrhizas in plantation ecosystems. In: Nambiar EKS, Brown AG (eds) Management of soil, nutrients and water in tropical plantation forests. ACIAR, Canberra, Australia, pp 247–296

    Google Scholar 

  • Wilson JM, Tommerup IC (1992) Interactions between fungal symbionts: VA mycorrhizae. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, NY, pp 199–248

    Google Scholar 

  • Wilson JM, Trinick MJ (1983) Infection development and interactions between vesicular-arbuscular mycorrhizal fungi. New Phytol 93:543–553

    Article  Google Scholar 

  • Wilson JM, Trinick MJ, Parker CA (1983) The identification of vesicular-arbuscular mycorrhizal fungi using immunofluorescence. Soil Biol Biochem 15:439–445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutarman Gafur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gafur, S. (2014). Contribution of Dynamics of Root Colonisation by Arbuscular Mycorrhizal Communities to Ecosystem Function. In: Solaiman, Z., Abbott, L., Varma, A. (eds) Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45370-4_3

Download citation

Publish with us

Policies and ethics