Skip to main content

Contribution of Arbuscular Mycorrhizal Fungi to Soil Carbon Sequestration

  • Chapter
  • First Online:
Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration

Part of the book series: Soil Biology ((SOILBIOL,volume 41))

Abstract

The arbuscular mycorrhizal (AM) symbiosis which is formed between the majority of terrestrial plants and ubiquitous soil fungi in the phylum Glomeromycota can contribute to nutrient transfer and soil carbon sequestration. AM fungi have a role in C fluxes between plants and the atmosphere. They take up nutrients, especially phosphorus, from the soil and exchange them against photosynthetically fixed C from the host plant. Carbon is thought to be transferred from the plant to the intraradical hyphae through this symbiotic interface, from where it is transported to the extraradical network which extends into the soil matrix. The extent of turnover of AM fungal hyphae in soil associated with the network of hyphae inside roots is difficult to quantify. AM hyphae may contribute to soil C sequestration through mechanisms such as rhizodeposition or soil aggregate formation. The mechanisms of soil C sequestration and nutrient regulation by AM fungi are linked. The C flux from the root to the fungus can be a key trigger for P and N uptake and transport in the AM symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer PE, Zipfel W, Lammers P, Shachar-Hill Y (2002) Tracking metabolism and imaging transport in arbuscular mycorrhizal metabolism and transport in AM fungi. Plant Soil 244:189–197

    Article  CAS  Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Batjes NH (1996) The total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Calderon FJ, Schultz DJ, Paul EA (2012) Carbon allocation, belowground transfers and lipid turnover in a plant-microbial association. Soil Sci Soc Am J 76:1614–1623

    Article  CAS  Google Scholar 

  • Cheng L, Booker F, Tu C, Burkey K, Zhou L, Shew H, Rufty TW, Hu S (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 2:1084–1087

    Article  Google Scholar 

  • Dilkes NB, Jones DL, Farrar J (2004) Temporal dynamics of carbon partitioning and rhizodeposition in wheat. Plant Physiol 134:706–715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837

    Article  Google Scholar 

  • Fellbaum CR, Mensah JA, Pfeffer PE, Kiers ET, Bucking H (2012) The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis. Plant Signal Behav 7:1509–1512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in soil: inoculum types and external hyphal architecture. Mycologia 83:409–418

    Article  Google Scholar 

  • Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33:357–366

    Article  CAS  Google Scholar 

  • Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, Angelis P, Miglietta F, Peressotti A (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24

    Article  CAS  Google Scholar 

  • Graham JH (2000) Assessing the cost of arbuscular mycorrhizal symbiosis in agroecosystems. In: Podila GK, Douds DD (eds) Current advances in mycorrhizal research. The American Phytopathological Society, St. Paul, pp 127–140

    Google Scholar 

  • Grimoldi AA, Kavanová M, Lattanzi FA, Schäufele R, Schnyder H (2006) Arbuscular mycorrhizal colonization on carbon economy in perennial ryegrass: quantification by 13CO2/12CO2 steady-state labelling and gas exchange. New Phytol 172:544–553

    Article  CAS  PubMed  Google Scholar 

  • Herman DJ, Firestone MK, Nuccio E, Hodge A (2012) Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiol Ecol 80(536):236–247

    Article  CAS  PubMed  Google Scholar 

  • IPCC (1996) Climate change, impacts, adaptations and mitigation of climate change, scientific-technical analyses. Cambridge University Press, Cambridge

    Google Scholar 

  • Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30:905–916

    Article  CAS  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  CAS  PubMed  Google Scholar 

  • Johnson D, Leake JR, Read DJ (2002) Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C. Soil Biol Biochem 34:1521–1524

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Gavrichkova O (2010) Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Change Biol 16:3386–3406

    Article  Google Scholar 

  • Lal R (2003) Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit Rev Plant Sci 22:151–184

    Article  Google Scholar 

  • Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Article  Google Scholar 

  • Mencuccini M, Hölttä T (2010) The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked. New Phytol 185:189–203

    Article  CAS  PubMed  Google Scholar 

  • Miller RM, Jastrow JD (1992) The role of mycorrhizal fungi in soil conservation. In: Bethlenfalvay CJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. Crop Science Society and Soil Science Society of America, Madison, pp 29–44

    Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds D (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic, Dordrecht, pp 4–18

    Google Scholar 

  • Miller RM, Kling M (2000) The importance of integration and scale in the arbuscular mycorrhizal symbiosis. Plant Soil 226:295–309

    Article  CAS  Google Scholar 

  • Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23

    Article  Google Scholar 

  • Miller RM, Miller S, Jastrow JD, Rivetta CB (2002) Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii vitman. New Phytol 155:149–162

    Article  CAS  Google Scholar 

  • Nottingham AT, Turner BL, Winter K, Chamberlain PM, Stott A, Tanner EVJ (2013) Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. FEMS Microbiol Ecol 85:37–50

    Article  PubMed  Google Scholar 

  • Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK (2013) An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ Microbiol 15:1870–1881

    Article  CAS  PubMed  Google Scholar 

  • Oades JM, Waters AG (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815–828

    Article  Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310

    Article  CAS  Google Scholar 

  • Olsson PA, Johnson NC (2005) Tracking carbon from the atmosphere to the rhizosphere. Ecol Lett 8:1264–1270

    Article  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Redecker D (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Ren LX, Lou YS, Zhang N, Zhu XD, Hao WY, Sun SB, Shen QR, Xu GH (2013) Role of arbuscular mycorrhizal network in carbon and phosphorus transfer between plants. Biol Fertil Soils 49:3–11

    Article  CAS  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WP, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177

    Article  CAS  Google Scholar 

  • Rillig MC, Treseder KK, Allen MF (2002) Global change and mycorrhizal fungi. In: van der Heijden M, Sanders I et al (eds) Mycorrhizal ecology, vol 157, Ecological studies series. Springer, New York, pp 135–160

    Chapter  Google Scholar 

  • Schulze ED (2006) Biological control of the terrestrial carbon sink. Biogeosciences 3:147–166

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London, p 800

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Smith P, Powlson DS, Glendining MJ, Smith JU (1997) Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Glob Change Biol 3:67–79

    Article  Google Scholar 

  • Solaiman MZ, Saito M (1997) Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytol 136:533–538

    Article  CAS  Google Scholar 

  • Staddon PL, Heinemeyer A, Fitter AH (2002) Mycorrhizas and global environmental change: research at different scales. Plant Soil 244:253–261

    Article  CAS  Google Scholar 

  • Staddon PL, Bronk Ramsey C, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300:1138–1140

    Article  CAS  PubMed  Google Scholar 

  • Steinberg PD, Rillig MC (2003) Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biol Biochem 35:191–194

    Article  CAS  Google Scholar 

  • Thornley JHM, Parsons AJ (2014) Allocation of new growth between shoot, root and mycorrhiza in relation to carbon, nitrogen and phosphate supply: teleonomy with maximum growth rate. J Theor Biol 342:1–14

    Article  CAS  PubMed  Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Yeun LH, Xue J-Y, Liu Y, Ané J-M, Qiu Y-L (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186:514–525

    Article  PubMed  Google Scholar 

  • Willis A, Rodrigues BF, Harris PJC (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20

    Article  Google Scholar 

  • Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    Article  PubMed  Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  • Zhu YG, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends Plant Sci 8:407–409

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria M. Solaiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Solaiman, Z.M. (2014). Contribution of Arbuscular Mycorrhizal Fungi to Soil Carbon Sequestration. In: Solaiman, Z., Abbott, L., Varma, A. (eds) Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45370-4_18

Download citation

Publish with us

Policies and ethics