Skip to main content

Alleviation of Soil Stresses by Arbuscular Mycorrhizal Fungi

  • Chapter
  • First Online:
Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration

Part of the book series: Soil Biology ((SOILBIOL,volume 41))

Abstract

Many countries have long been applying large amounts of phosphate fertiliser to soils to increase food production, but excessive fertiliser use can result in phosphorus leaching and the potential for eutrophication. Strategies are required to minimise phosphorus leaching while still supplying sufficient phosphorus for crops. Soil stresses such as soil acidity and alkalinity, compaction, drought, salinity, extreme soil temperatures and flooding can reduce plant growth and yield. However, inoculation of crops with arbuscular mycorrhizal (AM) fungi has been considered a means of reducing such stresses. This review investigates the potential for AM fungi to contribute to alleviation of these stresses and supply phosphorus to plants with less fertiliser input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aliasgharzad N, Martensson LM, Olsson PA (2010) Acidification of a sandy grassland favours bacteria and disfavours fungal saprotrophs as estimated by fatty acid profiling. Soil Biol Biochem 42:1058–1064

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    Article  CAS  Google Scholar 

  • Atwell BJ, Steer BT (1990) The effect of oxygen deficiency on uptake and distribution of nutrients in maize plants. Plant Soil 122:1–8

    Article  CAS  Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Brady NC, Weil RR (2008) The nature and properties of soils. Pearson/Prentice Hall, Upper Saddle River

    Google Scholar 

  • Calderon FJ, Schultz DJ, Paul EA (2012) Carbon allocation, belowground transfers, and lipid turnover in a plant-microbial association. Soil Sci Soc Am J 76:1614–1623

    Article  CAS  Google Scholar 

  • Cardarelli M, Rouphael Y, Rea E, Colla G (2010) Mitigation of alkaline stress by arbuscular mycorrhiza in zucchini plants grown under mineral and organic fertilization. J Plant Nutr Soil Sci 173:778–787

    Article  CAS  Google Scholar 

  • Chambers CA, Smith SE, Smith FA (1980) Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum. New Phytol 85:47–62

    Article  CAS  Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305

    Article  Google Scholar 

  • Cramer VA, Hobbs RJ, Atkins L, Hodgson G (2004) The influence of local elevation on soil properties and tree health in remnant eucalypt woodlands affected by secondary salinity. Plant Soil 265:175–188

    Article  CAS  Google Scholar 

  • D’Emden FH, Llewellyn RS (2006) No-tillage adoption decisions in southern Australian cropping and the role of weed management. Aust J Exp Agr 46:563–569

    Article  Google Scholar 

  • Daei G, Ardekani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:217–225

    Article  Google Scholar 

  • Diacona M, Montemurro F (2010) Long-term effects on soil fertility. A review. Agron Sust Dev 30:411–422

    Google Scholar 

  • Duan T, Facelli E, Smith SE, Smith FA, Nan Z (2011) Differential effects of soil disturbance and plant residue on function of arbuscular mycorrhizal (AM) symbiosis are not reflected in colonization of roots or hyphal development in soil. Soil Biol Biochem 43:571–578

    Article  CAS  Google Scholar 

  • Evans DG, Miller MH (1988) Vesicular-arbuscular mycorrhizas and the soil-disturbance-induced reduction of nutrient absorption in maize. I. Causal relations. New Phytol 110:67–74

    Article  Google Scholar 

  • Evans J, McDonald L, Price A (2006) Application of reactive phosphate rock and sulphur fertilisers to enhance the availability of soil phosphate in organic farming. Nutr Cycl Agroecosyst 75:233–246

    Article  CAS  Google Scholar 

  • Fertiliser Working Group (2007) Phasing-out the use of highly soluble phosphorus fertilisers in an environmentally sensitive areas of South west and Western Australia. Minister of the Environment, Western Australia, pp 5–6

    Google Scholar 

  • Graham JH, Eissenstat DM, Drouillar DL (1991) On the relationship between a plant’s mycorrhizal dependency and rate of vesicular-arbuscular mycorrhizal colonization. Funct Ecol 5:773–779

    Article  Google Scholar 

  • Hayman DS, Mosse B (1971) Plant growth responses to vesicular arbuscular mycorrhiza. I. Growth of endogone—inoculated plants in phosphate deficient soils. New Phytol 70:19–22

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Article  Google Scholar 

  • Jansa J, Weimken A, Frossard E (2006) The effects of agricultural practices on arbuscular mycorrhizal fungi. In: Frossard E, Blum W, Warkentin B (eds) Function of soils for human societies and the environment, vol 266, Special publication. Geological Society, London, pp 89–115

    Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989) Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytol 112:93–99

    Article  Google Scholar 

  • Jensen A, Jakobsen I (1980) The occurrence of vesicular-arbuscular mycorrhiza in barley and wheat grown in some Danish soils with different fertilizer treatments. Plant Soil 55:403–414

    Article  CAS  Google Scholar 

  • Juniper S, Abbott L (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379

    Article  CAS  PubMed  Google Scholar 

  • Khan AG (1993) Occurrence and importance of mycorrhiza in aquatic trees of New South Wales, Australia. Mycorrhiza 3:31–38

    Article  Google Scholar 

  • Killham K (1994) Soil ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Kirk GJD, Ahmad AR, Nye PH (1990) Coupled diffusion and oxidation of ferrous iron in soils. Ó€Ó€. A model of diffusion and reaction of O2, Fe2+, H+ and HCO3 - in soils and a sensitivity analysis of the model. J Soil Sci Sci 41:411–431

    Article  CAS  Google Scholar 

  • Krishna KR, Shetty KG, Dart PJ, Andrews DJ (1985) Genotype dependent variation in mycorrhizal colonization and response to inoculation of pearl millet. Plant Soil 86:113–125

    Article  Google Scholar 

  • Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferrasol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lujerdean A, Rusu M, Marghitas M (2004) Effect of liming on soil phosphorus availability. In: Proceedings, Symposium on the prospects of the 3rd millennium agriculture, Romania, pp 39–41

    Google Scholar 

  • Macvay KA, Budde JA, Fabrizzi K, Mikha MM, Rice CW, Schlegel AJ, Peterson DE, Sweeney DW, Thompson C (2006) Management effects on soil physical properties in a long-term tillage studies. Soil Sci Soc Am J 70:434–438

    Article  Google Scholar 

  • Maiti D, Variar M, Singh RK (2011) Optimizing tillage schedule for maintaining activity of the arbuscular mycorrhizal fungal population in a rainfed upland rice (Oryza sativa L.) agro-system. Mycorrhiza 21:167–171

    Article  CAS  PubMed  Google Scholar 

  • Manske GGB (1989) Genetical analysis of the efficiency of VA mycorrhiza with spring wheat. Agric Ecosyst Environ 29:273–280

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Matsumara A, Horii S, Ishii T (2008) Observation of arbuscular mycorrhizal network system between trifoliate orange and some grasses under water-logged conditions. In: Proceedings, 27th International Conference, Seoul, South Korea, pp 69–75

    Google Scholar 

  • McGonigle TP, Miller MH (2000) The inconsistent effect of soil disturbance on colonization of roots by arbuscular mycorrhizal fungi: a test of the inoculums density hypothesis. Appl Soil Ecol 14:147–155

    Article  Google Scholar 

  • McKenzie N, Jacquier D, Isbell R, Brown K (2004) Australian soils and landscapes: an illustrated compendium. CSIRO, Collingwood

    Google Scholar 

  • Mendoza R, Escudero V, Garcia I (2005) Plant growth, nutrient acquisition and mycorrhizal symbioses of a water-logging tolerant legume (Lotus glaber Mill.) in saline-sodic soil. Plant Soil 275:305–315

    Article  CAS  Google Scholar 

  • Miller MH (2000) Arbuscular mycorrhizae and the phosphorus nutrition of maize: a review of Guelph studies. Can J Plant Sci 80:47–52

    Article  CAS  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Miransari M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean [Glycine max (L.) Merr.] nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr 30:1967–1992

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Porter WM, Robson AD, Abbott LK (1987) Factors controlling the distribution of vesicular-arbuscular mycorrhizal fungi in relation to soil pH. J Appl Ecol 24:663–672

    Article  Google Scholar 

  • Quilambo OA, Wiessenhorn I, Doddema H, Kuiper PJC, Stulen I (2005) Arbuscular mycorrhizal inoculation of peanut in low fertile tropical soil. II. Alleviation of drought stress. J Plant Nutr 28:1645–1662

    Article  CAS  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177

    Article  CAS  Google Scholar 

  • Robson AD, Abbott LK (1989) The effect of soil acidity on microbial activity in soil. In: Robson AD (ed) Soil acidity and plant growth. Academic, Sydney, pp 139–165

    Chapter  Google Scholar 

  • Rousk J, Brooks PC, Baath E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microb 75:1589–1596

    Article  CAS  Google Scholar 

  • Ryan MH, Norton RM, Kirkegaard JA, McCormick KM, Knights SE, Angus JF (2002) Increasing mycorrhizal colonization does not improve growth and nutrition of wheat on Vertosols in south-eastern Australia. Aust J Agric Res 53:1173–1181

    Article  CAS  Google Scholar 

  • Sah S, Reed S, Jayachandran K, Dunn C, Fisher JB (2006) The effect of repeated short term flooding on mycorrhiza survival in Snap bean roots. HortScience 41:598–602

    Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    Article  PubMed  Google Scholar 

  • Secilia J, Bagyaraj DJ (1992) Selection of efficient VA mycorrhizal fungi for wetland rice (Oryza sativa L.) plants. Biol Fertil Soils 13:108–111

    Article  Google Scholar 

  • Sharma MP, Adholeya A (2000) Response of Eucalyptus tereticornis to inoculation with indigenous AM fungi in a semiarid alfisol achieved with different concentrations of available soil P. Microbiol Res 154:349–354

    Article  CAS  PubMed  Google Scholar 

  • Sivaprasad P, Sulochana KK, Salam MA (1990) Vesicular-arbuscular mycorrhiza (VAM) colonization in lowland rice roots and its effect on growth and yield. Int Rice Res Newslett 15:14–15

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London, 800pp

    Google Scholar 

  • Solaiman MZ, Hirata H (1995) Effects of indigenous arbuscular mycorrhizal fungi in paddy fields on rice growth and N, P, K nutrition under different water regimes. Soil Sci Plant Nutr 41:505–514

    Article  Google Scholar 

  • Solaiman ZM, Hirata H (1996) Effectiveness of arbuscular mycorrhizal colonization at nursery-stage on growth and nutrition in wetland rice (Oryza sativa L.) after transplanting under different soil fertility and water regimes. Soil Sci Plant Nutr 42:561–571

    Article  Google Scholar 

  • Solaiman ZM, Hirata H (1997a) Effect of arbuscular mycorrhizal fungi inoculation of rice seedlings at the nursery stage upon performance in the paddy field and greenhouse. Plant and Soil 191:1–12

    Article  CAS  Google Scholar 

  • Solaiman ZM, Hirata H (1997b) Responses of directly seeded wetland rice to arbuscular mycorrhizal fungi. J Plant Nutr 20:1479–1487

    Article  CAS  Google Scholar 

  • Solaiman ZM, Saito M (2001) Phosphate efflux from intraradical hyphae of Gigaspora margarita in vitro and its implication for phosphorus. New Phytol 151:525–533

    Article  CAS  Google Scholar 

  • Thingstrup I, Rubaek G, Sibbesen E, Jakobsen I (1998) Flax (Linum usitatissimum L.) depends on arbuscular mycorrhizal fungi for growth and P uptake at intermediate but not high soil P levels in the field. Plant Soil 203:37–46

    Article  CAS  Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol 103:751–765

    Article  Google Scholar 

  • Toth R, Toth D, Starke D, Smith DR (1990) Vesicular-arbuscular colonization in Zea mays affected by breeding for resistance to fungal pathogens. Can J Bot 68:1039–1044

    Article  Google Scholar 

  • Triplett GB Jr, Dick WA (2008) No-tillage crop production: a revolution in agriculture! Celebrate the centennial. A Suppl Agron J 100:S153–S165

    Google Scholar 

  • Verbruggen E, Kiers ET (2010) Evolutionary ecology of mycorrhizal functional diversity in agricultural soils. Evol Appl 3:547–560

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Obed F. Madiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Madiba, O.F. (2014). Alleviation of Soil Stresses by Arbuscular Mycorrhizal Fungi. In: Solaiman, Z., Abbott, L., Varma, A. (eds) Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45370-4_13

Download citation

Publish with us

Policies and ethics