Skip to main content

Flux Tube Dynamics in the Presence of Mass Flows

  • Chapter
  • First Online:
Book cover Physics of Magnetic Flux Tubes

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 417))

  • 976 Accesses

Abstract

Mass flows observed throughout the solar atmosphere exhibit many patterns. They are observed in a wide temperature range of \(3 \times 10^4\)\(10^7\) K, and can have a steady, unsteady, or explosive character. Their amplitudes vary from a few tenths of km s\(^{-1}\) at the photosphere up to hundreds of km s\(^{-1}\) in the transition region and corona. The presence of mass flows drastically changes the dynamics of magnetic structures, and most importantly, plays a crucial role in the processes of the energy production, transfer, and release. Depending on the geometry and intensity of the flow, the system of magnetic flux tubes exhibits a number of unusual phenomena that are directly observed. In this chapter, we consider mainly two effects associated with the presence of mass flows. One is the instability of negative-energy waves (NEWs) and other lies in the range of velocities beyond the instability threshold, namely the effect of mass flows on the energy transfer by the phase mixed Alfvén waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • C.E. Alexander, G. Del Zanna, R.C. Maclean, Astron. Astrophys. 526, 134 (2011)

    Article  ADS  Google Scholar 

  • S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover Publications Inc., New York, 1961)

    MATH  Google Scholar 

  • B. Coppi, M.N. Rosenbluth, R. Sudan, Ann. Phys. 55, 201 (1969)

    Google Scholar 

  • I. De Moortel, A.W. Hood, T.D. Arber, Astron. Astrophys. 354, 334 (2000)

    Google Scholar 

  • K.P. Dere, J.-D.F. Bartoe, G.E. Brueckner, Sol. Phys. 123, 41 (1989)

    Google Scholar 

  • K.P. Dere, Space Science Rev. 70, 21 (1994)

    Google Scholar 

  • V.M. Dikasov, L.I. Rudakov, D.D. Ryutov, Sov. Phys. JETP 21, 1965 (1965)

    Google Scholar 

  • S.R. Habbal, G.L. Withbroe, Sol. Phys. 69, 77 (1981)

    Google Scholar 

  • S.R. Habbal, G.L. Withbroe, J.F. Dowdy Jr, Astrophys. J. 352, 333 (1990)

    Google Scholar 

  • S.R. Habbal, R.D. Gonzalez, Astrophys. J. 326, L25 (1991)

    Google Scholar 

  • J.W. Harvey, N.R. Sheeley Jr, Space Sci. Rev. 23, 139 (1979)

    Google Scholar 

  • J. Heyvaerts, E.R. Priest, Astron. Astrophys. 117, 220 (1983)

    Google Scholar 

  • A.W. Hood, J. Ireland, E.R. Priest, Astron. Astrophys. 318, 957 (1997)

    Google Scholar 

  • Z. Huang, M.S. Madjarska, J.G. Doyle, D.A. Lamb, Astron. Astrophys. 548, 62 (2012)

    Google Scholar 

  • J.A. Ionson, Astrophys. J. 226, 650 (1978)

    Google Scholar 

  • B.B. Kadomtzev, A.B. Mikhailovski, A.V. Timofeev, Sov. Phys. JETP 20, 1517 (1964)

    Google Scholar 

  • O. Kjeldseth-Moe, N. Brynildsen, P. Brekke, P. Maltby, Space Sci. Rev. 70, 89 (1994)

    Google Scholar 

  • L. Landau, M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford)

    Google Scholar 

  • L.A. Ostrovskii, S.A. Rybak, LSh Tsimring, Phys. Uspekhi 29, 1040 (1964)

    Google Scholar 

  • L.A. Ostrovskii, S.A. Rybak, LSh Tsimring, Phys. Uspekhi 29, 1040 (1986)

    Google Scholar 

  • E.N. Parker, Astrophys. J. 376, 355 (1991)

    Google Scholar 

  • A.D. Rogava, S. Poedts, S.M. Mahajan, Astron. Astrophys. 354, 749 (2000)

    Google Scholar 

  • M.P. Ryutova, in Proceedings of XIII International Conference on Ionized Gases (Berlin, 1977), p. 859

    Google Scholar 

  • M.P. Ryutova, Sov. Phys. JETP 67(8), 1594 (1988)

    Google Scholar 

  • P.L. Similon, R.N. Sudan, Astrophys. J. 336, 442 (1989)

    Article  ADS  Google Scholar 

  • P.A. Sturrock, Phys. Rev. Lett. 16, 270 (1966)

    Article  ADS  Google Scholar 

  • H. Tian, W. Curdt, M. Eckart, Astrophys. J. 681L, 121 (2008)

    Google Scholar 

  • Yu. Voitenko, M. Goossens, Astron. Astrophys. 357, 1073 (2000)

    ADS  Google Scholar 

  • R.W. Walsh, J. Ireland, Astron. Astrophys. Rev. 12, 1 (2003)

    Article  ADS  Google Scholar 

  • G.L. Withbroe, D.T. Jaffe, P.V. Foukal, M.C.E. Huber, R.W. Noyes, E.M. Reeves, E.J. Schmahl, J.G. Timothy, J.E. Vernazza, Astrophys. J. 203, 528 (1976)

    Article  ADS  Google Scholar 

  • J. Weiland, H. Wilhelmsson, Coherent Nonlinear Interaction of Waves in Plasmas (Pergamon Press, Oxford, 1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Ryutova .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ryutova, M. (2015). Flux Tube Dynamics in the Presence of Mass Flows. In: Physics of Magnetic Flux Tubes. Astrophysics and Space Science Library, vol 417. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45243-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45243-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45242-4

  • Online ISBN: 978-3-662-45243-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics