Skip to main content

Compositional, Approximate, and Quantitative Reasoning for Medical Cyber-Physical Systems with Application to Patient-Specific Cardiac Dynamics and Devices

  • Conference paper
Leveraging Applications of Formal Methods, Verification and Validation. Specialized Techniques and Applications (ISoLA 2014)

Abstract

The design of bug-free and safe medical device software is challenging, especially in complex implantable devices that control and actuate organs who’s response is not fully understood. Safety recalls of pacemakers and implantable cardioverter defibrillators between 1990 and 2000 affected over 600,000 devices. Of these, 200,000 or 41%, were due to firmware issues that continue to increase in frequency. According to the FDA, software failures resulted in 24% of all medical device recalls in 2011. There is currently no formal methodology or open experimental platform to test and verify the correct operation of medical-device software within the closed-loop context of the patient.

The goal of this effort is to develop the foundations of modeling, synthesis and development of verified medical device software and systems from verified closed-loop models of the device and organ(s). Our research spans both implantable medical devices such as cardiac pacemakers and physiological control systems such as drug infusion pumps which have multiple networked medical systems. These devices are physically connected to the body and exert direct control over the physiology and safety of the patient. The focus of this effort is on (a) Extending current binary safety properties to quantitative verification; (b) Development of patient-specific models and therapies; (c) Multi-scale modeling of complex physiological phenomena and compositional reasoning across a range of model abstractions and refinements; and (d) Bridging the formal reasoning and automated generation of safe and effective software for future medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartocci, E., Bortolussi, L., Nenzi, L.: A temporal logic approach to modular design of synthetic biological circuits. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS (LNBI), vol. 8130, pp. 164–177. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of temporal properties for stochastic models. In: Proc. of HSB 2013: The 2nd Intern. Workshop on Hybrid Systems and Biology. EPTCS, vol. 125, pp. 3–19 (2013)

    Google Scholar 

  3. Bartocci, E., Cherry, E.M., Glimm, J., Grosu, R., Smolka, S.A., Fenton, F.H.: Toward real-time simulation of cardiac dynamics. In: Proceedings of the 9th International Conference on Computational Methods in Systems Biology, CMSB 2011, pp. 103–112. ACM, New York (2011)

    Google Scholar 

  4. Bartocci, E., Singh, R., von Stein, F.B., Amedome, A., Caceres, A.J., Castillo, J., Closser, E., Deards, G., Goltsev, A., Ines, R.S., Isbilir, C., Marc, J.K., Moore, D., Pardi, D., Sadhu, S., Sanchez, S., Sharma, P., Singh, A., Rogers, J., Wolinetz, A., Grosso-Applewhite, T., Zhao, K., Filipski, A.B., Gilmour, R.F., Grosu, R., Glimm, J., Smolka, S.A., Cherry, E.M., Clarke, E.M., Griffeth, N., Fenton, F.H.: Teaching cardiac electrophysiology modeling to undergraduate students: Laboratory exercises and GPU programming for the study of arrhythmias and spiral wave dynamics. Adv. Physiol. Educ. 35(4), 427–437 (2011)

    Article  Google Scholar 

  5. Gao, S., Avigad, J., Clarke, E.M.: Delta-complete decision procedures for satisfiability over the reals. In: Proceedings of the 6th International Joint Conference on Automated Reasoning (IJCAR), pp. 286–300 (2012)

    Google Scholar 

  6. Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 305–314 (2012)

    Google Scholar 

  7. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–214. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo ODEs. In: Proceedings of the 13th International Conference on Formal Methods in Computer Aided Design, FMCAD (2013)

    Google Scholar 

  9. Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Grosu, R., Peled, D., Ramakrishnan, C.R., Smolka, S.A., Stoller, S.D., Yang, J.: Compositional branching-time measurements. In: Bensalem, S., Lakhneck, Y., Legay, A. (eds.) FPS 2014 (Sifakis Festschrift). LNCS, vol. 8415, pp. 118–128. Springer, Heidelberg (2014)

    Google Scholar 

  11. Grosu, R., Peled, D., Ramakrishnan, C.R., Smolka, S.A., Stoller, S.D., Yang, J.: Using statistical model checking for measuring systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 223–238. Springer, Heidelberg (2014)

    Google Scholar 

  12. Islam, M.A., Murthy, A., Bartocci, E., Girard, A., Smolka, S., Grosu, R.: Compositionality results for cardiac cell dynamics. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol. 8130, pp. 242–244. Springer, Heidelberg (2013)

    Google Scholar 

  13. Islam, M.A., Murthy, A., Bartocci, E., Cherry, E.M., Fenton, F.H., Glimm, J., Smolka, S.A., Grosu, R.: Model-order reduction of ion channel dynamics using approximate bisimulation. Theoretical Computer Science (in press, 2014)

    Google Scholar 

  14. Islam, M.A., Murthy, A., Girard, A., Smolka, S.A., Grosu, R.: Compositionality results for cardiac cell dynamics. In: Proc. of HSCC 2014: The 17th International Conference on Hybrid Systems: Computation and Control, HSCC 2014, pp. 243–252. ACM, New York (2014)

    Chapter  Google Scholar 

  15. Jiang, Z., Pajic, M., Alur, R., Mangharam, R.: Closed-loop verification of medical devices with model abstraction and refinement. STTT 16(2), 191–213 (2014)

    Article  Google Scholar 

  16. Luther, S., Fenton, F.H., Kornreich, B.G., Squires, A., Bittihn, P., Hornung, D., Zabel, M., Flanders, J., Gladuli, A., Campoy, L., Cherry, E.M., Luther, G., Hasenfuss, G., Krinsky, V.I., Pumir, A., Gilmour, R.F., Bodenschatz, E.: Low-energy control of electrical turbulence in the heart. Nature 475(7355), 235–239 (2011)

    Article  Google Scholar 

  17. Murthy, A., Bartocci, E., Fenton, F., Glimm, J., Gray, R., Cherry, E., Smolka, S., Grosu, R.: Curvature analysis of cardiac excitation wavefronts. IEEE/ACM Transactions on Computational Biology and Bioinformatics 10(2), 323–336 (2013)

    Article  Google Scholar 

  18. Murthy, A., Islam, M.A., Bartocci, E., Cherry, E.M., Fenton, F.H., Glimm, J., Smolka, S.A., Grosu, R.: Approximate bisimulations for sodium channel dynamics. In: Gilbert, D., Heiner, M. (eds.) CMSB 2012. LNCS, vol. 7605, pp. 267–287. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Pajic, M., Jiang, Z., Lee, I., Sokolsky, O., Mangharam, R.: From verification to implementation: A model translation tool and a pacemaker case study. In: Proceedings of IEEE 18th Real Time and Embedded Technology and Applications Symposium, Beijing, China, April 16-19, pp. 173–184 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grosu, R. et al. (2014). Compositional, Approximate, and Quantitative Reasoning for Medical Cyber-Physical Systems with Application to Patient-Specific Cardiac Dynamics and Devices. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Specialized Techniques and Applications. ISoLA 2014. Lecture Notes in Computer Science, vol 8803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45231-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45231-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45230-1

  • Online ISBN: 978-3-662-45231-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics