Skip to main content

Microorganisms for the Production of Lactic Acid and Organic Lactates

  • Chapter
  • First Online:
Microorganisms in Biorefineries

Part of the book series: Microbiology Monographs ((MICROMONO,volume 26))

Abstract

Biorefineries consider lactic acid as one of the most promising platform chemicals which are being extensively used in a wide range of food and nonfood applications. Since lactic acid is produced via biotechnological processes, the microbial strains are in the focus of interest, besides all the other aspects of raw materials, fermentation mode, etc.

Microorganisms, which are able to produce lactic acid and organic lactates, are systematically classified and morphologically and biochemically characterized, and their different metabolic pathways for the formation of various lactic acid enantiomers are described in detail. The genera Lactobacillus and Bifidobacterium are regarded as well as the order of the Bacillales. In addition, the important individual yeasts, moulds and other bacteria were also characterized.

The present review work is summarized on the fermentation systems used for the biotechnological production, the various raw materials and applications of lactic acid and organic lactates. Future developments in this area with respect to the strain selection and modifications, genetic-engineering approaches, carbohydrate sources and their pretreatment, fermentation techniques and the downstream processing options are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

G + C:

Guanine + cytosine

LA:

Lactic acid

LAB:

Lactic acid bacteria

PLA:

Polylactic acid

ssp.:

Subspecies

References

  • Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301. doi:10.1016/j.jbiotec.2011.06.017

    CAS  Google Scholar 

  • Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in LA production by microbial fermentation processes. Biotechnol Adv 31(6):877–902. doi:10.1016/j.biotechadv.2013.04.002

    CAS  PubMed  Google Scholar 

  • Adler P, Song HS, Kastner K, Ramkrishna D, Kunz B (2012) Prediction of dynamic metabolic behavior of Pediococcus pentosaceus producing lactic acid from lignocellulosic sugars. Biotechnol Prog 28:623–635. doi:10.1002/btpr.1521

    CAS  PubMed  Google Scholar 

  • Akerberg C, Zacchi G (2000) An economic evaluation of the fermentative production of lactic acid from wheat flour. Bioresour Technol 75(2):119–126. doi:10.1016/S0960-8524(00)00057-2

    CAS  Google Scholar 

  • Allison GE, Klaenhammer TK (1998) Phage resistance mechanisms in LA bacteria. Int Dairy J 8(3):207–226. doi:10.1016/S0958-6946(98)00043-0

    Google Scholar 

  • Alonso JL, Dominguez H, Garrote G, Gonzalez-Munoz MJ, Gullon B, Moure A, Santos V, Vila C, Yanez R (2011) Biorefinery processes for the integral valorization of agroindustrial and forestal wastes. CyTa-J Food 9:282–289. doi:10.1080/19476337.2011.598949

    CAS  Google Scholar 

  • Altaf MD, Naveena BJ, Venkateshwar M, Kumar EV, Reddy G (2006) Single step fermentation of starch to l(+) LA by Lactobacillus amylophilus GV6 in SSF using inexpensive nitrogen sources to replace peptone and yeast extract–optimization by RSM. Process Biochem 41(2):465–472. doi:10.1016/j.procbio.2005.07.011

    CAS  Google Scholar 

  • Altaf MD, Venkateshwar M, Srijana M, Reddy G (2007) An economic approach for L-(+) LA fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources. J Appl Microbiol 103(2):372–380. doi:10.1111/j.1365-2672.2006.03254.x

    CAS  PubMed  Google Scholar 

  • Andersen M, Kiel P (2000) Integrated utilisation of green biomass in the green biorefinery. Ind Crops Prod 11:129–137. doi:10.1016/S0926-6690(99)00055-2

    Google Scholar 

  • Antonio GV, Pinelli D, Rossi M, Fajner D, Magelli F, Matteuzzi D (1996) Production of L(+) and D(−) LA isomers by Lactobacillus casei subsp. casei DSM 20011 and Lactobacillus coryniformis subsp. torquens DSM 20004 in continuous fermentation. J Ferment Bioeng 81(6):548–552. doi:10.1016/0922-338X(96)81478-4

    Google Scholar 

  • Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11(2):187–198. doi:10.1016/S0958-1669(00)00085-9

    CAS  PubMed  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko A, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia Coli K-12 in-frame, single-gene knockout mutans: the Keio collection. Mol Syst Biol 2:1–11. doi:10.1038/msb4100050

    Google Scholar 

  • Bai DM, Zhao XM, Li XG, Xu SM (2004) Strain improvement of Rhizopus oryzae for over-production of (+)-LA and metabolic flux analysis of mutants. Biochem Eng J 18:41–48. doi:10.1016/S1369-703X(03)00126-8

    CAS  Google Scholar 

  • Bai DM, Li SZ, Liu ZL, Cui ZF (2008) Enhanced L-(+)-LA production by an adapted strain of Rhizopus oryzae using corncob hydrolysate. Appl Biochem Biotechnol 144:79–85. doi:10.1007/s12010-007-8078-y

    CAS  PubMed  Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (1990) Yeast: characteristics and identification, 2nd edn. Cambridge University Press, Cambridge, p 1002

    Google Scholar 

  • Benthin S (1994) Growth energetics of Lactococcus cremoris FD1 during energy-, carbon-, and nitrogen-limitation in steady state and transient cultures. Chem Eng Sci 49(5):589–609. doi:10.1016/0009-2509(94)85006-2

    CAS  Google Scholar 

  • Berry AR, Franco CMM, Zhang W, Middelberg APJ (1999) Growth and LA production in batch culture of Lactobacillus rhamnosus in a defined medium. Biotechnol Lett 21(2):163–167. doi:10.1023/A:1005483609065

    CAS  Google Scholar 

  • Bianchi MM, Brambilla L, Protani F, Liu C, Lievense J, Porro D (2001) Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous LDH gene. Appl Environ Microbiol 67:5621–5625. doi:10.1128/AEM.67.12.5621-5625.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bilanovic D, Chang F-H, Isobaev P, Welle P (2011) Lactic acid and xanthan fermentations on an alternative potato residues media–carbon source costs. Biomass Bioenergy 35:2683–2689. doi:10.1016/j.biombioe.2011.03.001

    CAS  Google Scholar 

  • Bischoff KM, Liu S, Hughes SR, Rich JO (2010) Fermentation of corn fiber hydrolysate to lactic acid by the moderate thermophile Bacillus coagulans. Biotechnol Lett 32:823–828. doi:10.1007/s10529-010-0222-z

    CAS  PubMed  Google Scholar 

  • Bisset DL, Anderson RL (1974) Lactose and D-galactose metabolism in group N-streptococci: presence of enzymes for both the D-galactose-1-phosphate and d-tagatose-6-phosphate pathways. J Bacteriol 117(1):318–320

    Google Scholar 

  • Bomrungnok W, Sonomoto K, Pinitglang S, Wongwicharn A (2012) Single step LA production from cassava starch by Lactobacillus plantarum SW14 in conventional continuous and continuous with high cell density. APCBEE Procedia 2:97–103. doi:10.1016/j.apcbee.2012.06.018

    CAS  Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554. doi:10.1039/B922014C

    CAS  Google Scholar 

  • Buruleanu CL, Leane NC, Manea I, Bratu MG, Avram D (2011) Kinetic study of the LA fermentation of cabbage juice with Bifidobacterium sp. Curr Opin Biotechnol 22(1):S41. doi:10.1016/j.copbio.2011.05.099

    Google Scholar 

  • Calabia BP, Tokiwa Y, Aiba S (2011) Fermentative production of L-(+)-LA by an alkaliphilic marine microorganism. Biotechnol Lett 33(7):1429–1433. doi:10.1007/s10529-011-0573-0

    CAS  PubMed  Google Scholar 

  • Carreras Ginjaume E (1985) Process for the preparation of imidazole lactate. ES 540,741(21.02.1985/17.05.1986)

    Google Scholar 

  • Castillo Martinez FA, Balciunas EM, Salgado JM, Domínguez González JM, Converti A, de Souza P, Oliveira R (2013) LA properties, applications and production: a review. Trends Food Sci Technol 30:70–83. doi:10.1016/j.tifs.2012.11.007

    Google Scholar 

  • CBS-Knaw (2014) Rhizopus oryzae. http://www.cbs.knaw.nl/Collections. Accessed 5 Jun 2014

  • Chang DE, Jung HC, Rhee JS, Pan JG (1999) Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65(4):1384–1389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chatterjee P, Basu RK, Shegal JM (1997) Possible anthelmintic use of piperazine acetate and lactate. Indian J Exp Biol 15:568–569

    Google Scholar 

  • Claus D, Berkeley RCW (1986) The genus Bacillus. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2, 9th edn. William and Wilkins, Baltimore, MD, pp 1105–1138

    Google Scholar 

  • Cui F, Li Y, Wan C (2011) LA production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresour Technol 102(2):1831–1836. doi:10.1016/j.biortech.2010.09.063

    CAS  PubMed  Google Scholar 

  • Danner H, Madzingaidzo L, Thomasser C, Neureiter M, Braun R (2002) Thermophilic production of lactic acid using integrated membrane bioreactor systems coupled with monopolar electrodialysis. Appl Microbiol Biotechnol 59(2–3):160–169. doi:10.1007/s00253-002-0998-4

    CAS  PubMed  Google Scholar 

  • Dao TH, Zhang J, Bao J (2013) Characterization of inulin hydrolyzing enzyme(s) in commercial glucoamylases and its application in LA production from Jerusalem artichoke tubers (Jat). Bioresour Technol 148:157–162. doi:10.1016/j.biortech.2013.08.123

    CAS  PubMed  Google Scholar 

  • Datta R, Tsai SP, Bonsignore P, Moon SH, Frank JR (1995) Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol Rev 16:221–231. doi:10.1111/j.1574-6976.1995.tb00168.x

    CAS  Google Scholar 

  • De Hoog GS, Guarro J, Gené J, Figueras MJ (2000) Atlas of clinical fungi, 2nd edn. Centraalbureau voor Schimmelcultures, Utrecht

    Google Scholar 

  • De Vries W, Stouthamer AH (1967) Pathway of glucose fermentation in relation to the taxonomy of bifidobacteria. J Bacteriol 93(2):574–576

    PubMed Central  PubMed  Google Scholar 

  • De Vries W, Stouthamer AH (1969) Factors determining the degree anaerobiosis of Bifidobacterium strains. Arch Microbiol 65:275–287. doi:10.1007/BF00407109

    Google Scholar 

  • Delgado P, Sanz MT, Beltrán S, Núñez LA (2010) Ethyl lactate production via esterification of lactic acid with ethanol combined with pervaporation. Chem Eng J 165:693–700. doi:10.1016/j.cej.2010.10.009

    CAS  Google Scholar 

  • Dequin S, Barre P (1994) Mixed LA-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L-(+)-LDH. J Biotechnol 12:173–177. doi:10.1038/nbt0294-173

    CAS  Google Scholar 

  • Devriese LA, Pot B (1995) The genus Enterococcus. In: Wood BJB, Holzapfel WH (eds) The LA bacteria, vol 2, The genera of LA bacteria. Blackie Academic and Professional, London, pp 327–367

    Google Scholar 

  • Dey P, Pal P (2013) Modelling and simulation of continuous L (+) lactic acid production from sugarcane juice in membrane integrated hybrid-reactor system. Biochem Eng J 79:15–24. doi:10.1016/j.bej.2013.06.014

    CAS  Google Scholar 

  • Dien BS, Nichols NN, Bothast RJ (2001) Recombinant Escherichia coli engineered for production of L-LA from hexose and pentose sugars. J Ind Microbiol Biotechnol 27(4):259–264

    CAS  PubMed  Google Scholar 

  • Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000, on the protection of workers from risks related to exposure to biological agents at work (seventh individual directive within the meaning of Article 16(1) of Directive 89/391/EEC)

    Google Scholar 

  • Efremenko E, Spiricheva O, Varfolomeyev S, Lozinsky V (2006) Rhizopus oryzae fungus cells producing L(+)-LA: kinetic and metabolic parameters of free and PVA- cryogel-entrapped mycelium. Appl Microbiol Biotechnol 72:480–485. doi:10.1007/s00253-005-0297-y

    CAS  PubMed  Google Scholar 

  • Eisenberg RC, Dobrogosz WJ (1967) Gluconate metabolism in Escherichia coli. J Bacteriol 93(3):941–949

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fitzpatrick JJ, Murphy C, Mota FM, Pauli T (2003) Impurity and cost considerations for nutrient supplementation of whey permeate fermentations to produce lactic acid for biodegradable plastics. Int Dairy J 13(7):575–580. doi:10.1016/S0958-6946(03)00072-4

    CAS  Google Scholar 

  • Forde A, Fitzgerald GF (1999) Bacteriophage defense systems in LA bacteria. Anton Leeuw Int J G 76(1–4):89–113. doi:10.1023/A:1002027321171

    CAS  Google Scholar 

  • Fritze D, Claus D (1995) Spore-forming, LA producing bacteria of the genera Bacillus and Sporolactobacillus. In: Wood BJB, Holzapfel WH (eds) The LA bacteria, vol 2, The genera of LA bacteria. Blackie Academic and Professional, London, pp 368–391

    Google Scholar 

  • Fu W, Mathews AP (1999) LA production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate, and oxygen. Biochem Eng J 3(3):163–170. doi:10.1016/S1369-703X(99)00014-5

    CAS  Google Scholar 

  • Fuhrer T, Fischer E, Sauer U (2005) Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 187:581–1590. doi:10.1128/JB.187.5.1581-1590.2005

    Google Scholar 

  • Fukushima K, Sogo K, Miura S, Kimura Y (2004) Production of D-LA by bacterial fermentation of rice starch. Macromol Biosci 4(11):1021–1027. doi:10.1002/mabi.200400080

    CAS  PubMed  Google Scholar 

  • Gao T, Ho K-P (2013) L-Lactic acid production by Bacillus subtilis MUR1 in continuous culture. J Biotechnol 168:646–651. doi:10.1016/j.jbiotec.2013.09.023

    CAS  PubMed  Google Scholar 

  • Garvie EI (1986) Genus Pediococcus. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2, 9th edn. William and Wilkins, Baltimore, MD, pp 1075–1079

    Google Scholar 

  • Ghosh B, Ray RR (2011) Current commercial perspective of Rhizopus oryzae: a review. J Appl Sci 11(14):2470–2486. doi:10.3923/jas.2011.2470.2486

    Google Scholar 

  • Giraud E, Champailler A, Raimbault M (1994) Degradation of raw starch by a wild amylolytic strain of Lactobacillus plantarum. Appl Environ Microbiol 60(12):4319–4323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giurca R, Levin RE (1992) Optimization of the lactic acid fermentation of hydrolyzed cod gurry with molasses. J Food Biochem 16:83–97

    CAS  Google Scholar 

  • Giurca R, Levin RE (1993) Optimization of the lactic acid fermentation of hydrolyzed cod (Gadus morhua) gurry with corn syrup as carbohydrate source. J Food Biochem 16:277–289

    CAS  Google Scholar 

  • Grabar TB, Zhou S, Shanmugam KT, Yomano LP, Ingram LO (2006) Methylglyoxal bypass identified as source of chiral contamination in L(+) and D(−)-lactate fermentations by recombinant Escherichia coli. Biotechnol Lett 28(19):1527–1535. doi:10.1007/s10529-006-9122-7

    CAS  PubMed  Google Scholar 

  • Gullon B, Garrote G, Alonso JL, Parajo JC (2007) Production of L-lactic acid and oligomeric compounds from apple pomace by simultaneous saccharification and fermentation: a response surface methodology assessment. J Agric Food Chem 55:5580–5587. doi:10.1021/jf070442v

    CAS  PubMed  Google Scholar 

  • Gutmacher F (2008) Fermentationsuntersuchungen zur Herstellung von Aminiumlactat. Diploma Thesis, Beuth-University of Applied Science, Berlin

    Google Scholar 

  • Hamamci H, Ryu DDY (1994) Production of L (+)-LA using immobilized Rhizopus oryzae reactor performance based on kinetic model and simulation. Appl Biochem Biotechnol 44:125–133. doi:10.1007/BF02921650

    CAS  Google Scholar 

  • Hammes WP, Hertel C (2009) Genus I. Lactobacillus Beijerinck 1901. In: Whitman WB, Parte AC (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, NY, pp 465–511

    Google Scholar 

  • Hammes WP, Vogel RF (1995) The genus Lactobacillus. In: Wood BJB, Holzapfel WH (eds) The LA bacteria, vol 2, The genera of LA bacteria. Blackie Academic and Professional, London, pp 19–54

    Google Scholar 

  • Hammes W, Weiss N, Holzapfel W (1991) The genera Lactobacillus and Carnobacterium. In: The prokaryotes, vol II, 2nd edn. Springer, Berlin, pp 1535–1594

    Google Scholar 

  • Hardie JM (1986) Other Streptococci. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2, 9th edn. William and Wilkins, Baltimore, MD, pp 1068–1071

    Google Scholar 

  • Hardie JM, Whiley RA (1995) The genus Streptococcus. In: Wood BJB, Holzapfel WH (eds) The LA bacteria, vol 2, The genera of LA bacteria. Blackie Academic and Professional, London, pp 55–124

    Google Scholar 

  • Hassan A, Frank J (2001) Starter cultures and their use. In: Marth EH, Steele JL (eds) Applied dairy microbiology. Marcel Dekker, New York, NY, pp 151–206

    Google Scholar 

  • Hetenyi K, Nemeth A, Sevella B (2010) First steps in the development of a wheat flour based lactic acid fermentation technology. Culture medium optimization. Chem Biochem Eng Q 24(2):195–201

    CAS  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, Mclaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547. doi:10.1016/j.mycres.2007.03.004

    PubMed  Google Scholar 

  • Hirayama S, Ueda R (2004) Production of optically pure D-LA by Nannochlorum sp. 26A4. Appl Biochem Biotechnol 119(1):71–78

    CAS  PubMed  Google Scholar 

  • Hofvendahl K, Hahn-Hägerdahl B (1997) L-LA production from whole wheat flour hydrolysate using strains of Lactobacilli and Lactococci. Enzyme Microb Technol 20(4):301–307. doi:10.1016/S0141-0229(97)83489-8

    CAS  Google Scholar 

  • Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative LA production from renewable resources. Enzyme Microb Technol 26:87–107. doi:10.1016/S0141-0229(99)00155-6

    CAS  PubMed  Google Scholar 

  • Holzapfel WH, Franz CMAP, Ludwig W, Dicks LMT (2009) Genus III. Pediococcus. In: Whitman WB, Parte AC (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, NY, pp 513–532

    Google Scholar 

  • Hua Q, Joyce R, Fong SS, Palsson BØ (2006) Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains. Biotechnol Bioeng 95:992–1002. doi:10.1002/bit.21073

    CAS  PubMed  Google Scholar 

  • Huang LP, Jin B, Lant P, Zhou J (2005) Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochem Eng J 23(3):265–276. doi:10.1016/j.bej.2005.01.009

    CAS  Google Scholar 

  • Hujanen M, Linko S, Linko YY, Leisola M (2001) Optimisation of media and cultivation conditions for L(+)(S)-LA production by Lactobacillus casei NRRL B-441. Appl Microbiol Biotechnol 56:126–130. doi:10.1007/s002530000501

    CAS  PubMed  Google Scholar 

  • Ilmen M, Koivuranta K, Ruohonen L, Suominen P, Penttilä M (2007) Efficient production of L-lactic acid from xylose by Pichia stipitis. Appl Environ Microbiol 73:117–123. doi:10.1128/AEM.01311-06

    CAS  PubMed Central  PubMed  Google Scholar 

  • John RP (2009) Biotechnological potentials of cassava bagasse. In: Singh nee’ Nigam P, Pandey A (eds) Biotechnology for agro-industrial residues utilisation. Springer Science + Business Media B.V., pp 225–237. doi:10.1007/978-1-4020-9942-7_11

  • John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of LA from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74(3):524–534. doi:10.1007/s00253-006-0779-6

    CAS  PubMed  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2009) Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol Adv 27:145–152. doi:10.1016/j.biotechadv.2008.10.004

    CAS  PubMed  Google Scholar 

  • Kamble SP, Barve PP, Joshi JB, Rahman I, Kulkarni BD (2012) Purification of lactic acid via esterification of lactic acid using a packed column, followed by hydrolysis of methyl lactate using three continuously stirred tank reactors (CSTRs) in series: a continuous pilot plant study. Ind Eng Chem Res 51:1506–1514. doi:10.1021/ie200642j

    CAS  Google Scholar 

  • Kamm B, Kamm M, Richter K (1997) Formation of aminium lactates in lactic acid fermentation. Preparation and characterization of 1.4-Piperazinium-(L, L)-dilactate obtained from L(+)-lactic acid (Part I). Acta Biotechnol 17(1):3–18. doi:10.1002/abio.370170102

    CAS  Google Scholar 

  • Kamm B, Kamm M, Richter K (1999) New method for preparing poly(lactic acid) from renewable raw material. In: 6th symposium on renewable resources and 4th European symposium on industrial crops & products, Bonn, 23–25 March, Schriftenreihe Nachwachsende Rohstoffe Bd 14, Landwirtschaftsverlag GmbH Münster, pp 685–692. ISBN 3-7843-3019-3

    Google Scholar 

  • Kamm B, Kamm M, Richter K, Reimann W, Siebert A (2000) Formation of aminium lactates in lactic acid fermentation. Fermentative production of 1.4-Piperazinium-(L, L)-Dilactate and its use as a starting material for the synthesis of dilactide (Part 2). Acta Biotechnol 20(3–4):289–304. doi:10.1002/abio.370200310

    CAS  Google Scholar 

  • Kamm B, Kamm M, Schönicke P, Bohnen F (2008) Technology for production of carbonic acid ester. WO 2009/083551, 23.12.2008/09.07.2009

    Google Scholar 

  • Kandler O (1983) Carbohydrate metabolism in LA bacteria. Anton Leeuw Int J G 49(3):209–224. doi:10.1007/BF00399499

    CAS  Google Scholar 

  • Kandler O, Weiss N (1986) Sektion 14 regular, nonsporing gram-positive rods. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2, 9th edn. William and Wilkins, Baltimore, MD, pp 1208–1234

    Google Scholar 

  • Kim HJ, Hou BK, Lee SG, Kim JS, Lee DW, Lee SJ (2013) Genome-wide analysis of redox reactions reveals metabolic engineering targets for d-lactate overproduction in Escherichia coli. Metab Eng 18:44–52. doi:10.1016/j.ymben.2013.03.004

    CAS  PubMed  Google Scholar 

  • Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N, Lopez Garcia I, Kookos IK, Papanikolaou S, Kwan TH, Lin CSK (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43:2587–2627. doi:10.1039/c3cs60293a

    CAS  PubMed  Google Scholar 

  • Kwon S, Lee PC, Lee EG, Chang YK, Chang N (2000) Production of LA by Lactobacillus rhamnosus with vitamin supplemented soybean hydrolysate. Enzyme Microb Technol 26:209–215. doi:10.1016/S0141-0229(99)00134-9

    CAS  PubMed  Google Scholar 

  • Kwon S, Yoo IK, Lee WG, Chang HN, Chang YK (2001) High-rate continuous production of LA by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnol Bioeng 73(1):25–34. doi:10.1002/1097-0290(20010405)

    CAS  PubMed  Google Scholar 

  • Kyla-Nikkila K, Hujanen M, Leisola M, Palva A (2000) Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L-(+)-LA. Appl Environ Microbiol 66(9):3835–3841. doi:10.1128/AEM.66.9.3835-3841.2000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee RK, Ryu HW, Oh H, Kim M, Wee YJ (2014) Cell-recycle continuous fermentation of Enterococcus faecalis RKY1 for economical production of lactic acid by reduction of yeast extract supplementation. J Microbiol Biotechnol 24:661–666. doi:10.4014/jmb.1402.02017

    CAS  PubMed  Google Scholar 

  • Leiss S, Venus J, Kamm B (2010) Fermentative production of L-Lysine-L-lactate with fractionated press juices from the green biorefinery. Chem Eng Technol 33(12):2102–2105. doi:10.1002/ceat.201000314

    CAS  Google Scholar 

  • Li Y, Shahbazi A, Williams K, Wan C (2008) Separate and concentrate LA using combination of nanofiltration and reverse osmosis membranes. Appl Biochem Biotechnol 147(1–3):1–9. doi:10.1007/s12010-007-8047-5

    CAS  PubMed  Google Scholar 

  • Li Z, Lu J, Yang Z, Han L, Tan T (2012) Utilization of white rice bran for production of l-lactic acid. Biomass Bioenergy 39:53–58. doi:10.1016/j.biombioe.2011.12.039

    Google Scholar 

  • Li Y, Wang L, Ju J, Yu B, Ma Y (2013) Efficient production of polymer-grade D-lactate by Sporolactobacillus laevolacticus DSM442 with agricultural waste cottonseed as the sole nitrogen source. Bioresour Technol 142:186–191. doi:10.1016/j.biortech.2013.04.124

    CAS  PubMed  Google Scholar 

  • Linko YY, Javanainen P (1996) Simultaneous liquefaction, saccharification, and lactic acid fermentation on barley starch. Enzyme Microb Technol 19:118–123. doi:10.1016/0141-0229(95)00189-1

    CAS  Google Scholar 

  • Logan NA, de Vos P (2009) Genus I. Bacillus Cohn 1872. In: Whitman WB, Parte AC (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, NY, pp 21–128

    Google Scholar 

  • López-Garzón CS, Straathof AJJ (2014) Recovery of carboxylic acids produced by fermentation. Biotechnol Adv 32(5):873–904. doi:10.1016/j.biotechadv.2014.04.002

    PubMed  Google Scholar 

  • Lu Z, Wei M, Yu L (2012) Enhancement of pilot scale production of L(+)-lactic acid by fermentation coupled with separation using membrane bioreactor. Process Biochem 47:410–415. doi:10.1016/j.procbio.2011.11.022

    CAS  Google Scholar 

  • Ludwig W, Schleifer K-H, Whitman WB (2009) Genus I. Sporolactobacillus. In: Whitman WB, Parte AC (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, NY

    Google Scholar 

  • Ma K, Maeda T, You H, Shirai Y (2014) Open fermentative production of L-LA with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient. Bioresour Technol 151:28–35. doi:10.1016/j.biortech.2013.10.022

    CAS  PubMed  Google Scholar 

  • Martak J, Schlosser S, Sabolova E, Kristofikova L, Rosenberg M (2003) Fermentation of lactic acid with Rhizopus arrhizus in a stirred tank reactor with a periodical bleed and feed operation. Process Biochem 38(11):1573–1583. doi:10.1016/S0032-9592(03)00059-1

    CAS  Google Scholar 

  • Marques DS, Gil MH, Baptista CMSG (2012) Bulk polytransesterification of L-lactic acid esters: an alternative route to synthesize poly(lactic acid). J Appl Polym Sci 125:E283–E289. doi:10.1002/app.36825

    CAS  Google Scholar 

  • Mazumdar S, Blankschien M, Clomburg J, Gonzalez R (2013) Efficient synthesis of L-LA from glycerol by metabolically engineered Escherichia coli. Microb Cell Fact 12(7):1–11

    Google Scholar 

  • Melchiorsen CR, Jensen NBS, Christensen B, Jokumsen KV, Villadsen J (2001) Dynamics of pyruvate metabolism in Lactococcus lactis. Biotechnol Bioeng 74(4):271–279. doi:10.1002/bit.1117

    CAS  PubMed  Google Scholar 

  • Melchiorsen CR, Jokumsen KV, Villadsen J, Israelsen H, Arnau J (2002) The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis. Appl Microbiol Biotechnol 58(3):338–344. doi:10.1007/s00253-001-0892-5

    CAS  PubMed  Google Scholar 

  • Meussen BJ, de Graaff LH, Sanders JPM, Weusthuis RA (2012) Metabolic engineering of Rhizopus oryzae for the production of platform chemicals. Appl Microbiol Biotechnol 94:875–886. doi:10.1007/s00253-012-4033-0

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mimitsuka T, Kyungsu NK, Moriata K, Sawai H, Minegishi S, Henmi M, Yamada K, Shimizu S, Yonehara T (2012) A membrane-integrated fermentation reactor system: its effects in reducing the amount of sub-raw materials for D-LA continuous fermentation by Sporolactobacillus laevolacticus. Biosci Biotechnol Biochem 76(1):67–72. doi:10.1271/bbb.110499

    CAS  PubMed  Google Scholar 

  • Miura S, Arimura T, Hoshino M, Kojima M, Dwiarti L, Okabe M (2003) Optimization and scale-up of L-LA fermentation by mutant strain Rhizopus sp. MK-96-1196 in airlift bioreactors. J Biosci Bioeng 96:65–69. doi:10.1016/S1389-1723(03)90098-3

    CAS  PubMed  Google Scholar 

  • Moldes AB, Torrado A, Converti A, Dominguez JM (2006) Complete bioconversion of hemicellulosic sugars from agricultural residues into lactic acid by Lactobacillus pentosus. Appl Biochem Biotechnol 135:219–227. doi:10.1385/ABAB:135:3:219

    CAS  PubMed  Google Scholar 

  • Morlon-Guyot J, Guyot JP, Pot B, Jacobe de Haut I, Raimbault M (1998) Lactobacillus manihotivorans sp. nov., a new starch-hydrolysing LA bacterium isolated during cassava sour starch fermentation. Int J Syst Bacteriol 48:1101–1109. doi:10.1099/00207713-48-4-1101

    CAS  PubMed  Google Scholar 

  • Mukisa IM, Byaruhanga YB, Muyanja CMBK, Aijuka M, Schuller RB, Sahlstrom S, Langsrud T, Narvhus JA (2012) Influence of cofermentation by amylolytic Lactobacillus plantarum and Lactococcus lactis strains on the fermentation process and rheology of sorghum porridge. Appl Environ Microbiol 78(15):5220–5228. doi:10.1128/AEM.00857-12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagamori E, Shimizu K, Fujita H, Tokuhiro K, Ishida N, Takahashi H (2013) Metabolic flux analysis of genetically engineered Saccharomyces cerevisiae that produces lactate under micro-aerobic conditions. Bioprocess Biosyst Eng 36(9):1261–1265. doi:10.1007/s00449-012-0870-6

    CAS  PubMed  Google Scholar 

  • Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501. doi:10.1016/j.biortech.2010.05.092

    Google Scholar 

  • Nancib N, Nancib A, Boudjelal A, Benslimane C, Blanchard F, Boudrant J (2001) The effect of supplementation by different nitrogen sources on the production of lactic acid from date juice by Lactobacillus casei subsp. rhamnosus. Bioresour Technol 78:149–153. doi:10.1016/S0960-8524(01)00009-8

    CAS  PubMed  Google Scholar 

  • Nolasco-Hipolito C, Matsunaka T, Kobayashi G, Sonomoto K, Ishizaki A (2002) Synchronised fresh cell bioreactor system for continuous L(+) LA production using Lactococcus lactis IO-1 in hydrolysed sago starch. J Biosci Bioeng 93:281–287. doi:10.1263/jbb.93.281

    CAS  PubMed  Google Scholar 

  • Nolasco-Hipolito C, Zarrabal O, Kamaldin R, Teck-Yee L, Lihan S, Bujang K, Nitta Y (2012) LA production by Enterococcus faecium in liquefied sago starch. AMB Express 2:53. doi:10.1186/2191-0855-2-53

    PubMed Central  PubMed  Google Scholar 

  • Oh H, Wee YJ, Yun JS, Han SH, Jung S, Ryu HW (2005) Lactic acid production from agricultural resources as cheap raw materials. Bioresour Technol 96(13):1492–1498. doi:10.1016/j.biortech.2004.11.020

    CAS  PubMed  Google Scholar 

  • Ohkouchi Y, Inoue Y (2006) Direct production of l(+)-LA from starch and food wastes using Lactobacillus manihotivorans LMG18011. Bioresour Technol 97(13):1554–1562. doi:10.1016/j.biortech.2005.06.004

    CAS  PubMed  Google Scholar 

  • Okano K, Yoshida S, Tanaka T, Fukuda H, Kondo A (2009a) Homo D-LA fermentation from arabinose by redirection of phosphoketolase pathway to pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75:5175–5178. doi:10.1128/AEM.00573-09

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okano K, Yoshida S, Yamda R, Tanaka T, Ogino C, Fukuda H, Kondo A (2009b) Improved production of homo-D-LA via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to pentose phosphate path- way in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75:7858–7861. doi:10.1128/AEM.01692-09

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure LA from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85(3):413–423. doi:10.1007/s00253-009-2280-5

    CAS  PubMed  Google Scholar 

  • Oliveira AP, Nielsen J, Förster J (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5:39, http://www.biomedcentral.com/1471-2180/5/39.doi: 10.1186/1471-2180-5-39

    PubMed Central  PubMed  Google Scholar 

  • Oost JVD, Bulthuis BA, Feitz S, Krab K, Kraayenhof R (1989) Fermentation metabolism of the unicellular cyanobacterium Cyanothece PCC 7822. Arch Microbiol 152(5):415–419. doi:10.1007/BF00446921

    Google Scholar 

  • Otlewska A, Walczak P, Kalinowska H, Dybka K, Oltuszak-Walczak E, Czyzowska A, Rygala A (2012) l-Lactic acid production from rye and oat grains. New Biotechnol 29(Suppl):S174. doi:10.1016/j.nbt.2012.08.485

  • Ou MS, Ingram LO, Shanmugam KT (2011) L(+)-LA production from non-food carbohydrates by thermotolerant Bacillus coagulans. J Ind Microbiol Biotechnol 38:599–605. doi:10.1007/s10295-010-0796-4

    CAS  PubMed  Google Scholar 

  • Ouyang J, Ma R, Zheng Z, Cai C, Zhang M, Jiang T (2013) Open fermentative production of l-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material. Bioresour Technol 135:475–480. doi:10.1016/j.biortech.2012.09.096

    CAS  PubMed  Google Scholar 

  • Parab P (1995) Topical preparations having α-hydroxy carboxylic acids for treatment of skin disorders. US 5.420,106. 22.03.1994/30.05.1995

    Google Scholar 

  • Park EY, Anh PN, Okuda N (2004) Bioconversion of waste office paper to L (+)-LA by the filamentous fungus Rhizopus oryzae. Bioresour Technol 93:77–83. doi:10.1016/j.biortech.2003.08.017

    CAS  PubMed  Google Scholar 

  • Patel M, Ou M, Ingram LO, Shanmugam KT (2004) Fermentation of sugar cane bagasse hemicellulose hydrolysate to L(+)-lactic acid by a thermotolerant acidophilic Bacillus sp.**. Biotechnol Lett 26(11):865–868. doi:10.1023/B:bile.0000025893.27700.5c

    CAS  PubMed  Google Scholar 

  • Payot T, Chemaly Z, Fick M (1999) LA production by Bacillus coagulans – kinetic studies and optimization of culture medium for batch and continuous fermentations. Enzyme Microb Technol 24(3–4):191–199. doi:10.1016/S0141-0229(98)00098-2

    CAS  Google Scholar 

  • Pernak J, Goc I, Mirska I (2004) Green Chem 6:323–329. doi:10.1039/b404625k

    CAS  Google Scholar 

  • Pescuma M, Hérbert EM, Mozzi F, de Valdez DF (2008) Whey fermentation by thermophilic LA bacteria: evolution of carbohydrates and protein content. Food Microbiol 25:442–451. doi:10.1016/j.fm.2008.01.007

    CAS  PubMed  Google Scholar 

  • Pintado J, Guyot JP, Raimbault M (1999) Lactic acid production from mussel processing wastes with an amylolytic bacterial strain. Enzyme Microb Technol 24(8–9):590–598. doi:10.1016/S0141-0229(98)00168-9

    CAS  Google Scholar 

  • Popa D, Ustunol Z (2011) Influence of sucrose, high fructose corn syrup and honey from different floral sources on growth and acid production by LA bacteria and bifidobacteria. Int J Dairy Technol 64:247–253. doi:10.1111/j.1471-0307.2011.00666.x

    CAS  Google Scholar 

  • Praphailong W, Fleet GH (1997) The effect of pH, sodium chloride, sucrose, sorbate and benzoate on the growth of food spoilage yeasts. Food Microbiol 14(2):459–468. doi:10.1006/fmic.1997.0106

    CAS  Google Scholar 

  • Qi X, Tang Y, Jian H, Li X, Jiang J (2011) Production of lactic acid by simultaneous saccharification and fermentation using steam pretreated lespedeza stalks as inexpensive raw materials. Adv Mater Res 152–153:1404–1411. doi:10.4028/www.scientific.net/AMR.152-153.1404

    Google Scholar 

  • Ramchandran L, Sanciolo P, Vasiljevic T, Broome M, Powell I, Duke M (2012) Improving cell yield and LA production of Lactococcus lactis ssp. cremoris by a novel submerged membrane fermentation process. J Memb Sci 403:179–187. doi:10.1016/j.memsci.2012.02.042

    Google Scholar 

  • Reimann W (2006) Downstreaming of lactic acid from hydrolysate of rye after fermentation. Agric Eng Int: the CIGR Ejournal. Manuscript FP 06 003. Vol. VIII. April 2006. http://hdl.handle.net/1813/10538

  • Richter K, Berthold C (1998) Biotechnological conversion of sugar and starchy crops into lactic acid. J Agric Eng Res 71(2):181–191. doi:10.1006/jaer.1998.0314

    Google Scholar 

  • Richter K, Kose F, Kamm B, Kamm M (2001) Fermentative production of piperazinium dilactate. Acta Biotechnol 21(1):37–47. doi:10.1002/1521-3846(200102)21

    CAS  Google Scholar 

  • Ryu HW, Kim YM, Wee YJ (2012) Influence of operating parameters on concentration and purification of L-lactic Acid using electrodialysis. Biotechnol Bioprocess Eng 17(6):1261–1269. doi:10.1007/s12257-012-0316-7

    CAS  Google Scholar 

  • Scardovi V (1986) Genus Bifidobacterium. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2, 9th edn. William and Wilkins, Baltimore, MD, pp 1418–1434

    Google Scholar 

  • Schepers AW, Thibault J, Lacroix C (2003) Lactobacillus helveticus growth and LA production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part I. Multiple factor kinetic analysis. Enzyme Microb Technol 30(2):176–186. doi:10.1016/S0141-0229(01)00465-3

    Google Scholar 

  • Scheutz F, Strockbine NA (2009) Genus I Escherichia. In: Whitman WB, Parte AC (eds) Bergey’s manual of systematic bacteriology, Part B, vol 2, 2nd edn. Springer, New York, NY, pp 607–624

    Google Scholar 

  • Schlegel HG (2007) Allgemeine mikrobiologie, 8th edn. Thieme, Stuttgart, p 364ff

    Google Scholar 

  • Schmidt HL (2002) Eine Mykothek. Zum Schimmelpilzvorkommen in Futtermitteln und Nahrungsgrundstoffen. LUFA Speyer, Speyer, pp 153–154

    Google Scholar 

  • Secchi N, Giunta D, Pretti L, García MR, Roggio T, Mannazzu I, Catzeddu P (2012) Bioconversion of ovine scotta into LA with pure and mixed cultures of LA bacteria. J Ind Microbiol Biotechnol 39(1):175–181

    CAS  PubMed  Google Scholar 

  • Sgorbati B, Biavati B, Palenzona D (1995) The genus Bifidobacterium. In: Wood BJB, Holzapfel WH (eds) The LA Bacteria, vol 2, The genera of LA bacteria. Blackie Academic and Professional, London, pp 279–303

    Google Scholar 

  • Shamala TR, Sreekantiah KR (1987) Degradation of starchy substrates by a crude enzyme preparation and utilization of the hydrolysates for lactic fermentation. Enzyme Microb Technol 9(12):726–729. doi:10.1016/0141-0229(87)90032-9

    CAS  Google Scholar 

  • Shene C, Mardones M, Zamora P, Bravo S (2005) Kinetics of Bifidobacterium longum ATCC 15707 fermentations: effect of the dilution rate and carbon source. Appl Microbiol Biotechnol 67(5):23–630. doi:10.1007/s00253-004-1792-2

    Google Scholar 

  • Shibata K, Flores DM, Kobayashi G, Sonomoto K (2007) Direct l-LA fermentation with sago starch by a novel amylolytic LA bacterium, Enterococcus faecium. Enzyme Microb Technol 41(1–2):149–155. doi:10.1016/j.enzmictec.2006.12.020

    CAS  Google Scholar 

  • Simpson WJ, Taguchi H (1995) The genus Pediococcus, with notes on the genera Tetratogenococcus and Aerococcus. In: Wood BJB, Holzapfel WH (eds) The LA bacteria, vol 2, The genera of LA bacteria. Blackie Academic and Professional, London

    Google Scholar 

  • Singh SK, Ahmed SU, Pandey A (2006) Metabolic engineering approaches for lactic acid production. Process Biochem 41:991–1000. doi:10.1016/j.procbio.2005.12.004

    CAS  Google Scholar 

  • Sjöberg A, Hahn-Hägerdahl B (1989) β glucose-phosphate, a possible mediator for polysaccharide formation in maltose-assimilation Lactococcus lactis. Appl Environ Microbiol 55(6):1549–1554

    PubMed Central  PubMed  Google Scholar 

  • Skory CD, Freer SN, Bothas RJ (1998) Production of L-LA by Rhizopus oryzae under oxygen limiting conditions. Biotechnol Lett 20:191–194. doi:10.1023/A:1005397028700

    CAS  Google Scholar 

  • Son MS, Kwon YJ (2013) Direct fermentation of starch to L(+)-LA by fed-batch culture of Lactobacillus manihotivorans. Food Sci Biotechnol 22(1):289–293. doi:10.1007/s10068-013-0040-x

    CAS  Google Scholar 

  • SpecialChem (2014) http://www.specialchem4bio.com/news/2014/05/23/global-lactic-acid-market-to-grow-at-a-cagr-of-15-5-from-2014-20-grand-view-research#sthash.McKc8RdH.dpuf. Accessed 18 Jun 2014

  • Stackebrandt E, Rainey FA, Warde-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47(2):479–491. doi:10.1099/00207713-47-2-479

    Google Scholar 

  • Stetter KO, Kandler O (1973) Untersuchungen zur Entstehung von DL-Milchsäure bei Lactobacillen und Charakterisierung einer Milchsäureracemase bei einigen Arten der Untergattung Streptobacterium. Arch Mikr 94(3):221–247. doi:10.1007/BF00417453

    CAS  Google Scholar 

  • Stewart BJ, Navid A, Kulp KS, Knaack JLS, Bench G (2013) D-Lactate production as a function of glucose metabolism in Saccharomyces cerevisiae. Yeast 30:81–91. doi:10.1002/yea.2942

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suh SO, Blackwell M, Kurtzman CP, Lachance MA (2006) Phylogenetics of Saccharomycetales, the ascomycete yeasts. Mycologia 98(6):1006–1017. doi:10.3852/mycologia.98.6.1006

    CAS  PubMed  Google Scholar 

  • Svec P, Devriese LA (2009) Genus I. Enterococcus. In: Whitman WB, Parte AC (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, NY, pp 594–607

    Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review. [Elektronisk resurs]. Bioresources 2(4):707–738. http://hdl.handle.net/2320/2960. Accessed 18 Jun 2014

  • Tang Y, Bu L, He J, Jiang J (2013) L(+)-LA production from furfural residues and corn kernels with treated yeast as nutrients. Eur Food Res Technol 236:365–371. doi:10.1007/s00217-012-1865-x

    CAS  Google Scholar 

  • Tashiro Y, Matsumoto H, Miyamoto H, Okugawa Y, Pramod P, Miyamoto H, Sakai K (2013) A novel production process for optically pure l-LA from kitchen refuse using a bacterial consortium at high temperatures. Bioresour Technol 146:672–681. doi:10.1016/j.biortech.2013.07.102

    CAS  PubMed  Google Scholar 

  • Taskila S, Ojamo H (2013) The current status and future expectations in industrial production of lactic acid by lactic acid bacteria. In: Kongo M (ed) Lactic acid bacteria - R & D for food, health and livestock purposes. InTech, Rijeka, pp 615–632. doi:10.5772/51282

    Google Scholar 

  • Taskin M, Esim N, Ortucu S (2012) Efficient production of L-LA from chicken feather protein hydrolysate and sugar beet molasses by the newly isolated Rhizopus oryzae TS-61. Food Bioprod Process 90:773–779. doi:10.1016/j.fbp.2012.05.003

    CAS  Google Scholar 

  • Tay A, Yang ST (2002) Production of L(+)-LA from glucose and starch by immobilised cell of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol Bioeng 80:1–12. doi:10.1002/bit.10340

    CAS  PubMed  Google Scholar 

  • Teuber M (1995) The genus Lactococcus. In: Wood BJB, Holzapfel WH (eds) The LA bacteria, vol 2, The genera of LA bacteria. Blackie Academic and Professional, London, pp 173–234

    Google Scholar 

  • Teuber M, Geis A (2006) The genus Lactococcus. In: Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, Dworkin M (eds) The prokaryotes. Springer, Berlin, pp 205–228. doi:10.1007/0-387-30744-3_7

    Google Scholar 

  • Teuber M (2009) Genus II. Lactococcus. In: Whitman WB, Parte AC (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, NY, pp 711–722

    Google Scholar 

  • Thomas TD, Ellwood DC, Longyear VM (1979) Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J Bacteriol 138(1):109–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomsen MH (2005) Complex media from processing of agricultural crops for microbial fermentation. Appl Microbiol Biotechnol 68:598–606. doi:10.1007/s00253-005-0056-0

    CAS  PubMed  Google Scholar 

  • Thongchul N (2013) Production of LA and polyLA for industrial applications. In: Yang ST, El-Ensashy H, Thongchul N (eds) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley, Hoboken, NJ, pp 293–316

    Google Scholar 

  • Trontel A, Batusic A, Gusic I, Slavica A, Santek B, Novak S (2011) Production of D- and L-LA by mono- and mixed cultures of Lactobacillus sp. Food Technol Biotechnol 49(1):75–82

    CAS  Google Scholar 

  • Venus J (2009) Continuous mode lactic acid fermentation based on renewables. Res J Biotechnol 4(2):15–22

    CAS  Google Scholar 

  • Venus J, Richter K (2006) Production of lactic acid from barley: strain selection, phenotypic and medium optimization. Eng Life Sci 6(5):492–500. doi:10.1002/elsc.200520136

    CAS  Google Scholar 

  • Vink ETH, Davies S, Kolstad JJ (2010) The eco-profile for current Ingeo® polylactide production. Ind Biotechnol 6(4):212–224. doi:10.1089/ind.2010.6.212

    CAS  Google Scholar 

  • Vishnu C, Naveena BJ, Altaf M, Venkateshwar M, Reddy G (2006) Amylopullulanase-A novel enzyme of L. amylophilus GV6 in direct fermentation of starch to L(+) LA. Enzyme Microb Technol 38(3–4):545–550. doi:10.1016/j.enzmictec.2005.07.010

    CAS  Google Scholar 

  • Vodnar DC, Venus J, Schneider R, Socaciu C (2010) Lactic acid production by Lactobacillus paracasei 168 in discontinuous fermentation Using Lucerne green juice as nutrient substitute. Chem Eng Technol 33(3):468–474. doi:10.1002/ceat.200900463

    CAS  Google Scholar 

  • Von Wright A, Axelsson L (2012) LA bacteria. In: Lahtinen S, Ouwehand AC, Salminen S, von Wright A (eds) LA bacteria – microbiological and functional aspects, 4th edn. CRC Press/Taylor & Francis Group, Boca Raton, FL, pp 1–16

    Google Scholar 

  • Walczak P, Oltuszak-Walczak E, Otlewska A, Dybka K, Pietraszek P, Czyzowska A, ygala A (2012) Xylose fermentation to optically pure l-lactate by isolates of Enterococcus faecium. New Biotechnol 29(Suppl):S62

    Google Scholar 

  • Walkup PC, Rohrmann ChA, Hallen RT, Eakin DE (1991) Production of esters of lactic acid, esters of acrylic acid, lactic acid and acrylic acid. WO 91/11527 08.08.1991

    Google Scholar 

  • Wang LM, Zhao B, Li FS, Xu K, Ma CQ, Tao F, Li QG, Xu P (2011) Highly efficient production of D-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Appl Microbiol Biotechnol 89(4):1009–1017. doi:10.1007/s00253-010-2904-9

    CAS  PubMed  Google Scholar 

  • Wang L, Xue Z, Zhao B, Yu B, Xu P, Ma Y (2012) Jerusalem artichoke powder: a useful material in producing high-optical-purity L-lactate using an efficient sugar-utilizing thermophilic Bacillus coagulans strain. Bioresour Technol 8:174–180. doi:10.1016/j.biortech.2012.11.144

    Google Scholar 

  • Watson D, Motherway MO, Schoterman MHC, van Neerven RJJ, Nauta A, van Sinderen D (2012) Selective carbohydrate utilization by lactobacilli and bifidobacteria. J Appl Microbiol 114(4):1132–1146. doi:10.1111/jam.12105

    Google Scholar 

  • Wee YJ, Ryu HW (2009) Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Bioresour Technol 100:4262–4270. doi:10.1016/j.biortech.2009.03.074

    CAS  PubMed  Google Scholar 

  • Whiley RA, Hardie JB (2009) The genus I. Streptococcus. In: Whitman WB, Parte AC (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, NY, pp 655–711

    Google Scholar 

  • Wood WA (1961) Fermentation of carbohydrates and related compounds. In: Gunsalus IC, Stanier RY (eds) The bacteria. Academic, New York, NY, pp 125–160

    Google Scholar 

  • Wood BJB, Holzapfel WH (1995) Lactic acid bacteria in contemporary perspective. In: Wood BJB, Holzapfel WH (eds) The lactic acid bacteria, vol 2, The genera of lactic acid bacteria. Academic, London, pp 1–6

    Google Scholar 

  • Wu X, Jiang S, Liu M, Pan L, Zheng Z, Luo S (2011) Production of L-LA by Rhizopus oryzae using semicontinuous fermentation in bioreactor. J Ind Microbiol Biotechnol 38:565–571. doi:10.1007/s10295-010-0804-8

    CAS  PubMed  Google Scholar 

  • Wu X, Altman R, Eiteman MA, Altman E (2013) Effect of overexpressing nhaA and nhaR on sodium tolerance and lactate production in Escherichia coli. J Biol Eng 7:3. doi:10.1186/1754-1611-7-3

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiaodong W, Xuan G, Rakshit SK (1997) Direct fermentative production of lactic acid on cassava and other starch substrates. Biotechnol Lett 19:841–843. doi:10.1023/A:1018321200591

    CAS  Google Scholar 

  • Yadav AK, Chaudhari AB, Kothari RM (2011) Bioconversion of renewable resources into LA: an industrial view. Crit Rev Biotechnol 1:1–19. doi:10.3109/07388550903420970

    Google Scholar 

  • Yamane T, Tanaka R (2013) Highly accumulative production of L (+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae. J Biosci Bioeng 115(1):90–95. doi:10.1016/j.jbiosc.2012.08.005

    CAS  PubMed  Google Scholar 

  • Yen HW, Kang JL (2010) LA production directly from starch in a starch-controlled fed-batch operation using Lactobacillus amylophilus. Bioprocess Biosyst Eng 33(9):1017–1723. doi:10.1007/s00449-010-0426-6

    CAS  PubMed  Google Scholar 

  • Yin PM, Nishina N, Kosakai Y, Yahiro K, Park Y, Okabe M (1997) Enhanced production of (L)-LA from corn starch in a culture Rhizopus oryzae using an air-lift bioreactor. J Ferment Bioeng 84:249–253. doi:10.1016/S0922-338X(97)82063-6

    CAS  Google Scholar 

  • Zacharof MP, Lovitt RW (2013) Modelling and simulation of cell growth dynamics, substrate consumption, and LA production kinetics of Lactococcus lactis. Biotechnol Bioprocess Eng 8(1):52–64. doi:10.1007/s12257-012-0477-4

    Google Scholar 

  • Zhang DX, Cheryan M (1991) Direct fermentation of starch to LA by Lactobacillus amylovorus. Biotechnol Lett 13(10):733–738. doi:10.1007/BF01088178

    CAS  Google Scholar 

  • Zhang Z, Jin B (2010) L(+)-lactic acid production using sugarcane molasses and waste potato starch: an alternative approach. Int Sugar J 112:17–22

    CAS  Google Scholar 

  • Zhao J, Xu L, Wang Y, Zhao X, Wang J, Garza E, Manow R, Zhou S (2013a) Homofermentative production of optically pure L-LA from xylose by genetically engineered Escherichia coli B. Microb Cell Fact 12:57. doi:10.1186/1475-2859-12-57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao K, Qiao Q, Chu D, Gu H, Dao TH, Zhang J, Bao J (2013b) Simultaneous saccharification and high titer LA fermentation of corn stover using a newly isolated LA bacterium Pediococcus acidilactici DQ2. Bioresour Technol 135:481–489. doi:10.1016/j.biortech.2012.09.063

    CAS  PubMed  Google Scholar 

  • Zheng L, Bai ZZ, Xu TT, He BF (2012) Glucokinase contributes to glucose phosphorylation in D-LA production by Sporolactobacillus inulinus Y2-8. J Ind Microbiol Biotechnol 39:1685–1692. doi:10.1007/s10295-012-1176-z

    CAS  PubMed  Google Scholar 

  • Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO (2003a) Production of optically pure D-LA in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69(1):399–407. doi:10.1128/AEM.69.1.399-407.2003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou S, Shanmugam KT, Ingram LO (2003b) Functional replacement of the Escherichia coli D-(−)-Lactate dehydrogenase gene (ldhA) with the L-(+)-Lactate dehydrogenase 2326 gene (ldhL) from Pediococcus acidilactici. Appl Environ Microbiol 69(4):2237–2244. doi:10.1128/AEM.69.4.2237-2244.2003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou L, Niu DD, Tian KM, Chen XZ, Prior BA, Shen W, Shi GY, Singh S, Wang ZX (2012) Genetically switched d-lactate production in Escherichia coli. Metab Eng 14(5):560–568. doi:10.1016/j.ymben.2012.05.004

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Idler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Idler, C., Venus, J., Kamm, B. (2015). Microorganisms for the Production of Lactic Acid and Organic Lactates. In: Kamm, B. (eds) Microorganisms in Biorefineries. Microbiology Monographs, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45209-7_9

Download citation

Publish with us

Policies and ethics