Skip to main content

Microorganisms for Biorefining of Green Biomass

  • Chapter
  • First Online:
Microorganisms in Biorefineries

Abstract

Traditional green crops such as grass, clover, alfalfa as well as new (halophytic) green biomass of Salicornia have great potential to be utilised in the concept of the green biorefinery, where the first step is a wet fractionation of the biomass to yield a sugar- and protein-rich juice and a lignocellulosic pulp fraction.

An array of industrially important microorganisms is needed in order to efficiently convert green biomass into useful products such as lactic acid, l-lysine and ethanol using the concept of green biorefining. The first—and vital microorganism used—is lactic acid bacteria, which has the ability to quickly acidify the easy perishable juice fraction and convert it into a storable nutrient-rich medium, e.g. l-lysine fermentation. The acidification also leads to precipitation of the “leaf” protein of the juice which allows for separation of this fraction to yield a value-added protein product. The resulting brown juice can be used as medium for l-lysine fermentation, e.g. using Corynebacterium glutamicum. The pulp fraction which is primarily lignocellulose is suggested as a good substrate for ethanol fermentation after physicochemical pretreatment and enzymatic hydrolysis. The most important microbes, given the current state of green biorefining, have been identified in this book chapter as Lactobacillus salivarius, Corynebacterium glutamicum and Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abideen Z, Ansari R, Khan MA (2011) Halophytes: potential source of ligno-cellulosic biomass for ethanol production. Biomass Bioenergy 35(5):1818–1822. doi:10.1016/j.biombioe.2011.01.023

    Article  CAS  Google Scholar 

  • Akbar E, Yaakob Z, Kamarudin SK, Ismail M, Salimon J (2009) Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock. Eur J Sci Res 29(3):396–403

    Google Scholar 

  • Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82(4):340–349. doi:10.1002/jctb.1676

    Article  CAS  Google Scholar 

  • Anasontzis GE, Zerva A, Stathopoulou PM, Haralampidis K, Diallinas G, Karagouni AD, Hatzinikolaou DG (2011) Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics. J Biotechnol 152(1):16–23

    Article  CAS  PubMed  Google Scholar 

  • Andersen M, Kiel P (1999) Method for treating organic waste materials. Eur Pat Appl WO 00/56912

    Google Scholar 

  • Andersen M, Kiel P (2000) Integrated utilisation of green biomass in the green biorefinery. Ind Crop Prod 11(2–3):129–137. doi:10.1016/S0926-6690(99)00055-2

    Article  Google Scholar 

  • Balat M (2011) Potential alternatives to edible oils for biodiesel production – A review of current work. Energy Convers Manag 52(2):1479–1492. doi:10.1016/j.enconman.2010.10.011

    Article  CAS  Google Scholar 

  • Bansal N, Tewari R, Gupta JK, Soni R, Soni SK (2011) A novel strain of Aspergillus niger producing a cocktail of hydrolytic depolymerising enzymes for the production of second generation biofuels. BioResources 6(1):552–569

    CAS  Google Scholar 

  • Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels – Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23(4):631–640. doi:10.1016/j.copbio.2011.11.012

    Article  CAS  PubMed  Google Scholar 

  • Bettiga M, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF (2009) Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 8(1):40

    Article  PubMed Central  PubMed  Google Scholar 

  • Biggs DR, Hancock KR (2001) Fructan 2000. Trends Plant Sci 6(1):8–9. doi:10.1016/S1360-1385(00)01796-9

    Article  CAS  PubMed  Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50(1–2):131–149. doi:10.1016/S0168-1605(99)00082-3

    Article  CAS  PubMed  Google Scholar 

  • Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour Technol 101(13):4754–4766. doi:10.1016/j.biortech.2009.10.097

    Article  CAS  PubMed  Google Scholar 

  • Chuck-Hernandez C, Perez-Carrillo E, Serna-Saldivar SO (2009) Production of bioethanol from steam-flaked sorghum and maize. J Cereal Sci 50(1):131–137. doi:10.1016/j.jcs.2009.04.004

    Article  CAS  Google Scholar 

  • Cogan TM, Hill C (1993) Cheese starter cultures. In: Fox PF (ed) Cheese: chemistry, physics and microbiology, vol 1, 2nd edn. Chapman and Hall, London, pp 193–255

    Google Scholar 

  • Crespo CF, Badshah M, Alvarez MT, Mattiasson B (2012) Ethanol production by continuous fermentation of d-(+)-cellobiose, d-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis. Bioresour Technol 103(1):186–191

    Article  CAS  PubMed  Google Scholar 

  • Danner H, Madzingaidzo L, Holzer M, Mayrhuber L, Braun R (2000) Extraction and purification of lactic acid from silages. Bioresour Technol 75(3):181–187

    Article  CAS  Google Scholar 

  • Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62(12):4465–4470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dodić S, Popov S, Dodić J, Ranković J, Zavargo Z, Jevtić Mučibabić R (2009) Bioethanol production from thick juice as intermediate of sugar beet processing. Biomass Bioenergy 33(5):822–827. doi:10.1016/j.biombioe.2009.01.002

    Article  Google Scholar 

  • Doores S (1993) Organic acids. In: Organic A, Davidson PM, Branen AL (eds) Antimicrobials in foods, 2nd edn. Dekker, New York

    Google Scholar 

  • Driehuis F, Oude Elferink SJWH, Van Wikselaar PG (2001) Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass Forage Sci 56(4):330–343. doi:10.1046/j.1365-2494.2001.00282.x

    Article  CAS  Google Scholar 

  • Dunlop RH, Hammond PB (1965) d-lactic acidosis of ruminants. Ann NY Acad Sci 119(3):1109–1132. doi:10.1111/j.1749-6632.1965.tb47466.x

    Article  CAS  PubMed  Google Scholar 

  • Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, New York

    Book  Google Scholar 

  • Foussard JN, Debellefontaine H, Besombes‐Vailhé J (1989) Efficient elimination of organic liquid wastes: wet air oxidation. J Environ Eng 115(2):367–385. doi:10.1061/(asce)0733-9372(1989)115:2(367

    Article  CAS  Google Scholar 

  • Glenn EP, O’Leary JW, Watson MC et al (1991) Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science 251(4997):1065–1065

    Article  CAS  PubMed  Google Scholar 

  • Golias H, Dumsday GJ, Stanley GA, Pamment NB (2002) Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and. Zymomonas mobilisJ Biotechnol 96(2):155–168

    CAS  Google Scholar 

  • Hansen EB (2002) Commercial bacterial starter cultures for fermented foods of the future. Int J Food Microbiol 78(1):119–131

    Article  PubMed  Google Scholar 

  • Holzer M, Mayrhuber E, Danner H, Braun R (2003) The role of Lactobacillus buchneri in forage preservation. Trends Biotechnol 21(6):282–287. doi:10.1016/S0167-7799(03)00106-9

    Article  CAS  PubMed  Google Scholar 

  • Isern NG, Xue J, Rao JV, Cort JR, Ahring BK (2013) Novel monosaccharide fermentation products in Caldicellulosiruptor saccharolyticus identified using NMR spectroscopy. Biotechnol Biofuel 6(1):47

    Article  CAS  Google Scholar 

  • Iwasaki K, Kikuchi H, Miyatake S-I, Aoki T, Yamasaki T, Oda Y (1990) Infiltrative and cytolytic activities of lymphokine-activated killer cells against a human glioma spheroid model. Cancer Res 50(8):2429–2436

    CAS  PubMed  Google Scholar 

  • Jeon B, Seo H, Yun A, Lee I, Park D (2010) Effect of glasswort (Salicornia herbacea L.) on nuruk-making process and makgeolli quality. Food Sci Biotechnol 19(4):999–1004. doi:10.1007/s10068-010-0140-9

    Article  Google Scholar 

  • Joglekar HG, Rahman I, Babu S, Kulkarni BD, Joshi A (2006) Comparative assessment of downstream processing options for lactic acid. Sep Purif Technol 52(1):1–17. doi:10.1016/j.seppur.2006.03.015

    Article  CAS  Google Scholar 

  • Johansson B, Hahn‐Hägerdal B (2002) The non‐oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res 2(3):277–282

    CAS  PubMed  Google Scholar 

  • Johnston S, Prakash R, Chen N, Kumagai M, Turano H, Cooney J, Schröder R (2013) An enzyme activity capable of endotransglycosylation of heteroxylan polysaccharides is present in plant primary cell walls. Planta 237(1):173–187. doi:10.1007/s00425-012-1766-z

    Article  CAS  PubMed  Google Scholar 

  • Kadam K, Chin C, Brown L (2008) Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover. J Ind Microbiol Biotechnol 35(5):331–341. doi:10.1007/s10295-008-0322-0

    Article  CAS  PubMed  Google Scholar 

  • Kamm B, Kamm M (2004) Principles of biorefineries, vol 64. Springer, Berlin

    Google Scholar 

  • Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100(9):2562–2568. doi:10.1016/j.biortech.2008.11.011

    Article  CAS  PubMed  Google Scholar 

  • Kaplan H, Hutkins RW (2003) Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195. Appl Environ Microbiol 69(4):2217–2222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karimi K, Emtiaziand G, Taherzadeh MJ (2006) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb Technol 40(1):138–144

    Article  CAS  Google Scholar 

  • Kerfai S, Fernández A, Mathé S, Alfenore S, Arlabosse P (2011) Production of green juice with an intensive thermo-mechanical fractionation process. Part II: effect of processing conditions on the liquid fraction properties. Chem Eng J 167(1):132–139. doi:10.1016/j.cej.2010.12.011

    Article  CAS  Google Scholar 

  • Kim B-C, Grote R, Lee D-W, Antranikian G, Pyun Y-R (2001) Thermoanaerobacter yonseiensis sp. nov., a novel extremely thermophilic, xylose-utilizing bacterium that grows at up to 85 °C. Int J Syst Evol Microbiol 51(4):1539–1548

    CAS  PubMed  Google Scholar 

  • Kiss RD, Stephanopoulos G (1992) Metabolic characterization of a L-lysine-producing strain by continuous culture. Biotechnol Bioeng 39(5):565–574. doi:10.1002/bit.260390512

    Article  CAS  PubMed  Google Scholar 

  • Klinke HB, Ahring BK, Schmidt AS, Thomsen AB (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol 82(1):15–26. doi:10.1016/s0960-8524(01)00152-3

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Singh SP, Mishra IM, Adhikari DK (2009) Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp. IIPE453. J Ind Microbiol Biotechnol 36(12):1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman C, Dien B (1998) Candida arabinofermentans, a new L-arabinose fermenting yeast. Antonie Van Leeuwenhoek 74(4):237–243

    Article  CAS  PubMed  Google Scholar 

  • Lachke A (2002) Biofuel from D-xylose—the second most abundant sugar. Resonance 7(5):50–58

    Article  CAS  Google Scholar 

  • Li Z, Xiao H, Jiang W, Jiang Y, Yang S (2013) Improvement of solvent production from xylose mother liquor by engineering the xylose metabolic pathway in Clostridium acetobutylicum EA 2018. Appl Biochem Biotechnol 171(3):555–568. doi:10.1007/s12010-013-0414-9

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69(6):627–642

    Article  CAS  PubMed  Google Scholar 

  • Lindgren SE, Dobrogosz WJ (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Lett 87(1–2):149–163. doi:10.1016/0378-1097(90)90703-S

    Article  CAS  Google Scholar 

  • Liu D, Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40(11):2230–2236. doi:10.1016/j.watres.2006.03.029

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Zhang M, Wang S, Cai J, Zhou X, Zhu C (2010) Nutritional characterization and changes in quality of Salicornia bigelovii Torr. during storage. LWT-Food Sci Technol 43(3):519–524

    Article  CAS  Google Scholar 

  • Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science (Washington) 251(4999):1318–1323

    Article  CAS  Google Scholar 

  • Malça J, Freire F (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation. Energy 31(15):3362–3380. doi:10.1016/j.energy.2006.03.013

    Article  Google Scholar 

  • Mamlouk D, Gullo M (2013) Acetic acid bacteria: physiology and carbon sources oxidation. Indian J Microbiol 53(4):377–384. doi:10.1007/s12088-013-0414-z

    Article  CAS  PubMed  Google Scholar 

  • Mandl MG (2010) Status of green biorefining in Europe. Biofuels Bioprod Biorefin 4(3):268–274. doi:10.1002/bbb.219

    Article  CAS  Google Scholar 

  • Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84(1):37–53

    Article  CAS  PubMed  Google Scholar 

  • Mishra VS, Mahajani VV, Joshi JB (1995) Wet air oxidation. Ind Eng Chem Res 34(1):2–48

    Article  CAS  Google Scholar 

  • Mohagheghi A, Evans K, Chou Y-C, Zhang M (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 98–100(1–9):885–898. doi:10.1385/abab:98-100:1-9:885

    Article  PubMed  Google Scholar 

  • Morlon-Guyot J, Guyot J, Pot B, De Haut IJ, Raimbault M (1998) Lactobacillus manihotivorans sp. nov., a new starch-hydrolysing lactic acid bacterium isolated during cassava sour starch fermentation. Int J Syst Bacteriol 48(4):1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Muck R (1993) The role of silage additives in making high quality silage. Paper presented at the Silage production from seed to animal. Proceedings of the national silage production conference, Syracuse, New York, Feb

    Google Scholar 

  • Müller M, Lier D (1994) Fermentation of fructans by epiphytic lactic acid bacteria. J Appl Bacteriol 76(4):406–411. doi:10.1111/j.1365-2672.1994.tb01647.x

    Article  PubMed  Google Scholar 

  • Neuner A, Heinzle E (2011) Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering. Biotechnol J 6(3):318–329

    Article  CAS  PubMed  Google Scholar 

  • Neuner A, Wagner I, Sieker T, Ulber R, Schneider K, Peifer S, Heinzle E (2013) Production of l-lysine on different silage juices using genetically engineered Corynebacterium glutamicum. J Biotechnol 163(2):217–224. doi:10.1016/j.jbiotec.2012.07.190

    Article  CAS  PubMed  Google Scholar 

  • Öhgren K, Rudolf A, Galbe M, Zacchi G (2006) Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy 30(10):863–869. doi:10.1016/j.biombioe.2006.02.002

    Article  Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57(10):2810–2815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates I: inhibition and detoxification. Bioresour Technol 74(1):17–24. doi:10.1016/S0960-8524(99)00160-1

    Article  CAS  Google Scholar 

  • Palnitkar S, Lachke A (1990) Efficient simultaneous saccharification and fermentation of agricultural residues by Saccharomyces cerevisiae and Candida shehatae. Appl Biochem Biotechnol 26(2):151–158. doi:10.1007/bf02921531

    Article  CAS  PubMed  Google Scholar 

  • Pang Z-W, Liang J-J, Huang R-B (2011) Fermentation of xylose into ethanol by a new fungus strain Pestalotiopsis sp. XE-1. J Ind Microbiol Biotechnol 38(8):927–933

    Article  CAS  PubMed  Google Scholar 

  • Paul Ross R, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79(1–2):3–16. doi:10.1016/S0168-1605(02)00174-5

    Article  PubMed  Google Scholar 

  • Payton MA, Hartley BS (1985) Mutants of Bacillus stearothermophilus lacking NAD-linked l-lactate dehydrogenase. FEMS Microbiol Lett 26(3):333–336

    CAS  Google Scholar 

  • Pimentel D, Patzek TW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 14(1):65–76

    Article  CAS  Google Scholar 

  • Qureshi N, Saha BC, Hector RE, Hughes SR, Cotta MA (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part I—Batch fermentation. Biomass Bioenergy 32(2):168–175

    Article  CAS  Google Scholar 

  • Rodrussamee N, Lertwattanasakul N, Hirata K, Limtong S, Kosaka T, Yamada M (2011) Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 90(4):1573–1586

    Article  CAS  PubMed  Google Scholar 

  • Ruklisha M, Jonina R, Paegle L, Petrovica G (2002) Metabolism and lysine biosynthesis control in Brevibacterium flavum: impact of stringent response in bacterial cells. In: Durieux A, Simon J (eds) Applied microbiology, vol 2. Springer, The Netherlands, pp 51–57

    Chapter  Google Scholar 

  • Saddler J, Chan M-H (1984) Conversion of pretreated lignocellulosic substrates to ethanol by Clostridium thermocellum in mono-and co-culture with Clostridium thermosaccharolyticum and Clostridium thermohydrosulphuricum. Can J Microbiol 30(2):212–220

    Article  CAS  Google Scholar 

  • Saha BC, Nichols NN, Cotta MA (2011) Ethanol production from wheat straw by recombinant Escherichia coli strain FBR5 at high solid loading. Bioresour Technol 102(23):10892. doi:10.1016/j.biortech.2011.09.041

    Article  CAS  PubMed  Google Scholar 

  • Sheorain V, Banka R, Chavan M (2000) Ethanol production from sorghum. Paper presented at the technical and institutional options for sorghum grain mold management: proceedings of an international consultation

    Google Scholar 

  • Simpson RJ, Bonnett GD (1993) Fructan exohydrolase from grasses. New Phytol 123(3):453–469

    Article  CAS  Google Scholar 

  • Sivagnanam K, Raghavan VG, Shah M, Hettich RL, Verberkmoes NC, Lefsrud MG (2011) Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose. Proteome Sci 9:66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36(1):1–29. doi:10.1016/S0168-1605(96)01233-0

    Article  CAS  PubMed  Google Scholar 

  • Stratton RW, Wong HM, Hileman JI (2010) Life cycle greenhouse gas emissions from alternative jet fuels. PARTNER Project 28:133

    Google Scholar 

  • Sveinsdottir M, Sigurbjornsdottir MA, Orlygsson J (2011) Ethanol and hydrogen production with thermophilic bacteria from sugars and complex biomass, Progress in biomass and bioenergy production. In Tech, Útgefandi, pp 359–394

    Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753. doi:10.1016/j.biortech.2009.11.080

    Article  CAS  PubMed  Google Scholar 

  • Thomsen MH (2005) Lactic acid fermentation of brown juice in the green crop drying plant. IB2 – University of Southern Denmark

    Google Scholar 

  • Thomsen MH, Kiel P (2008) Selection of lactic acid bacteria for acidification of brown juice (grass juice), with the aim of making a durable substrate for L-lysine fermentation. J Sci Food Agric 88(6):976–983. doi:10.1002/jsfa.3176

    Article  CAS  Google Scholar 

  • Tolan JS, Finn R (1987) Fermentation of D-xylose and L-arabinose to ethanol by Erwinia chrysanthemi. Appl Environ Microbiol 53(9):2033–2038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torry-Smith M, Sommer P, Ahring BK (2003) Purification of bioethanol effluent in an UASB reactor system with simultaneous biogas formation. Biotechnol Bioeng 84(1):7–12. doi:10.1002/bit.10734

    Article  CAS  PubMed  Google Scholar 

  • Treuber M (1996) Lactic acid bacteria. In: Biotechnology, vol 3, 2nd edn. Weinheim, New York

    Google Scholar 

  • Verho R, Londesborough J, Penttilä M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69(10):5892–5897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walton S, Heiningen AV, Walsum PV (2010) Inhibition effects on fermentation of hardwood extracted hemicelluloses by acetic acid and sodium. Bioresour Technol 101(6):1935–1940. doi:10.1016/j.biortech.2009.10.043

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang JQ, Zhou H, Feng T (2009) Effects of addition of previously fermented juice prepared from alfalfa on fermentation quality and protein degradation of alfalfa silage. Anim Feed Sci Technol 151(3–4):280–290. doi:10.1016/j.anifeedsci.2009.03.001

    Article  CAS  Google Scholar 

  • Weinberg Z (2008) Preservation of forage crops by solid-state lactic acid fermentation-ensiling. In: Pandey A, Soccol C, Larroche C (eds) Current developments in solid-state fermentation. Springer, New York, pp 443–467

    Chapter  Google Scholar 

  • Weinberg ZG, Muck RE (1996) New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol Rev 19(1):53–68. doi:10.1111/j.1574-6976.1996.tb00253.x

    Article  CAS  Google Scholar 

  • Whittenbury R (1962) An investigation of the lactic acid bacteria. Dissertation/Thesis, ProQuest, UMI Dissertations Publishing U6 - ctx_ver = Z39.88-2004&ctx_enc = info%3Aofi%2Fenc%3AUTF-8&rfr_id = info:sid/summon.serialssolutions.com&rft_val_fmt = info:ofi/fmt:kev:mtx:dissertation&rft.genre = dissertation&rft.title = An + investigation + of + the + lactic + acid + bacteria&rft

    Google Scholar 

  • Winters AL, Merry RJ, MÜLler M, Davies DR, Pahlow G, Müller T (1998) Degradation of fructans by epiphytic and inoculant lactic acid bacteria during ensilage of grass. J Appl Microbiol (Print) 84(2):304–312

    Article  CAS  Google Scholar 

  • Wu CH, Mulchandani A, Chen W (2008) Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol 16(4):181–188

    Article  CAS  PubMed  Google Scholar 

  • Xavier AM, Correia MF, Pereira SR, Evtuguin DV (2010) Second-generation bioethanol from eucalypt sulphite spent liquor. Bioresour Technol 101(8):2755–2761

    Article  CAS  PubMed  Google Scholar 

  • Zhang JG, Cai Y, Kobayashi R, Kumai S (2000) Characteristics of lactic acid bacteria isolated from forage crops and their effects on silage fermentation. J Sci Food Agric 80(10):1455–1460. doi:10.1002/1097-0010(200008)80:10<1455::aid-jsfa667>3.0.co;2-c

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Part of this research is sponsored by The Sustainable Bioenergy Research Consortium (SBRC), with contributions from Masdar Institute, Boeing, UOP Honeywell, Etihad Airways and SAFRAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette Hedegaard Thomsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomsen, M.H. et al. (2015). Microorganisms for Biorefining of Green Biomass. In: Kamm, B. (eds) Microorganisms in Biorefineries. Microbiology Monographs, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45209-7_6

Download citation

Publish with us

Policies and ethics