Skip to main content

The Role of Cellulose-Hydrolyzing Bacteria in the Production of Biogas from Plant Biomass

  • Chapter
  • First Online:
Microorganisms in Biorefineries

Part of the book series: Microbiology Monographs ((MICROMONO,volume 26))

Abstract

Biological decomposition of biomass, i.e., the abundant and renewably produced whole plant biomass, is the basis for the production of bioenergy and platform chemicals in a biorefinery. Biogas formation is presently the most energy-efficient, versatile, and mature technology of producing energy and (potentially) a number of useful by-products. It can use a wide range of dedicated energy crops and by-products from the biorefinery. Biogas is easily stored and distributed by the existing infrastructure and can be used directly by the end consumers. Although biogas fermentation from plant biomass uses mature technology, the efficiency and yield of biogas plants can however still be increased. Little is, for instance, known about the underlying biology, and the biological basis of the process is not completely understood. This review deals with the first step of biogas fermentation, the hydrolysis of the polysaccharides in plant biomass. It is regarded as one of the rate-limiting steps in the process. It also determines the overall efficiency of the process. Cellulose is recalcitrant to enzymatic hydrolysis and needs special enzyme systems which are produced by a limited number of specialized microorganisms. Various bacterial enzyme systems for cellulose degradation are discussed. The bacteria in biogas fermenters are analyzed, and potential key players for cellulose degradation are pointed out. The principles of their enzyme systems could be used for developing new cellulases for cellulosic biomass as a basic substrate in a future biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Only about 1/10 of the amount of ATP can be produced from a glucose molecule by anaerobic metabolism compared to respiration. However, the same amount of energy has to be expended for protein synthesis and secretion.

References

  • Adelsberger H, Hertel C, Glawischnig E, Zverlov V, Schwarz WH (2004) Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan: reconstitution of the in vivo system from recombinant enzymes. Microbiology 150:2257–2266

    CAS  PubMed  Google Scholar 

  • Anderson KL, Blair BG (1996) Regulation of the cellulolytic activity of Eubacterium cellulosolvens 5494: a review. SAAS Bull Biochem Biotechnol 9:57–62

    CAS  PubMed  Google Scholar 

  • Anderson I, Abt B, Lykidis A, Klenk H-P et al (2012) Genomics of aerobic cellulose utilization systems in actinobacteria. PLoS One 7(6):e39331. doi:10.1371/journal.pone.0039331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    CAS  PubMed  Google Scholar 

  • Aragone MR, Maurizi DM, Clara LO, Navarro Estrada JL, Ascione A (1992) Pseudomonas mendocina, an environmental bacterium isolated from a patient with human infective endocarditis. J Clin Microbiol 30:1583–1584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arai T, Ohara H, Karita S, Kimura T, Sakka K, Ohmiya K (2001) Sequence of celQ and properties of CelQ, a component of the Clostridium thermocellum cellulosome. Appl Microbiol Biotechnol 57:660–666

    CAS  PubMed  Google Scholar 

  • Ariffin H, Abdullah N, Umi Kalsom MS, Shirai Y, Hassan MA (2006) Production and characterization of cellulose by Bacillus pumilus. Int J Eng Technol 3(1):47–53

    Google Scholar 

  • Aurilia V, Martin JC, McCrae SI, Scot KP, Rincon MT, Flint HJ (2000) Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences. Microbiology 146:1391–1397

    CAS  PubMed  Google Scholar 

  • Avitia CI, Castellanos-Juarez FX, Sanchez E, Tellez-Valencia A, Fajardo-Cavazos P, Nicholson WL, Pedraza-Reyes M (2000) Temporal secretion of a multicellulolytic system in Myxobacter sp. AL-1 molecular cloning and heterologous expression of cel9 encoding a modular endocellulase clustered in an operon with cel48, an exocellobiohydrolase gene. Eur J Biochem 267:7058–7064

    CAS  PubMed  Google Scholar 

  • Bayer EA, Setter E, Lamed R (1985) Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 163:552–559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bayer EA, Shoham Y, Lamed R (2013) The prokaryotes: lignocellulose-decomposing bacteria and their enzyme systems. In: Rosenberg E (ed) The prokaryotes, 4th edn. Springer, Berlin, pp 216–266

    Google Scholar 

  • Bélaich JP, Tardif C, Bélaich A, Gaudin C (1997) The cellulolytic system of Clostridium cellulolyticum. J Biotechnol 57:3–14

    PubMed  Google Scholar 

  • Berger E, Jones WA, Jones DT, Woods DR (1990) Sequencing and expression of a cellodextrinase (ced1) gene from Butyrivibrio fibrisolvens H17c cloned in Escherichia coli. Mol Gen Genet 223:310–318

    CAS  PubMed  Google Scholar 

  • Bergquist PL, Moreland D, Gibbs MD, Morris DD, Te’o VS, Saul DJ, Morgan HW (1999) Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Ecol 28:99–110

    CAS  Google Scholar 

  • Blackall LL, Hayward AC, Sly LI (1985) Cellulolytic and extremophilic Gram-negative bacteria: revival of the genus Cellvibrio. J Appl Bacteriol 59:81–97

    CAS  Google Scholar 

  • Blouzard JC, Coutinho PM, Fierobe HP, Henrissat B et al (2010) Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics 10:541–554. doi:10.1002/pmic.200900311

    CAS  PubMed  Google Scholar 

  • Bochiwal C, Malley C, Chong JPJ (2010) Biomethane as an energy source. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2810–2815

    Google Scholar 

  • Boone DR, Chynoweth DP, Mah RA, Smith PH et al (1993) Ecology and microbiology of biogasification. Biomass Bioenergy 5:191–202

    CAS  Google Scholar 

  • Bredholt S, Sonne-Hansen J, Nielsen P, Mathrani IM, Ahring BK (1999) Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. Int J Syst Bacteriol 49:991–996

    CAS  PubMed  Google Scholar 

  • Cai S, Dong X (2010) Cellulosilyticum ruminicola gen. nov., sp. nov., isolated from the rumen of yak, and reclassification of Clostridium lentocellum as Cellulosilyticum lentocellum comb. nov. Int J Syst Evol Microbiol 60:845–849

    PubMed  Google Scholar 

  • Cavedon K, Leschine SB, Canale-Parola E (1990) Cellulase system of a free-living, mesophilic Clostridium (strain C7). J Bacteriol 172:4222–4230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cirne DG, Lehtomäki A, Björnsson L, Blackall LL (2007) Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. J Appl Microbiol 103:516–527

    CAS  PubMed  Google Scholar 

  • Coughlan MP, Mayer F (1992) The cellulose-decomposing bacteria and their enzyme systems. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes: a handbook on the biology of bacteria, 2nd edn. Springer, New York, pp 460–516

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    CAS  PubMed  Google Scholar 

  • Dees C, Ringelberg D, Scott TC, Phelps TJ (1995) Characterization of the cellulose degrading bacterium NCIMB 10462. Appl Biochem Biotechnol 51:263–274

    Google Scholar 

  • Ding SY, Bayer EA, Steiner D, Shoham Y, Lamed R (1999) A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase. J Bacteriol 181:6720–6729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Durrant AJ, Hall J, Hazlewood GP, Gilbert HJ (1991) The non-catalytic C-terminal region of endoglucanase E from Clostridium thermocellum contains a cellulose-binding domain. Biochem J 273:289–293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elberson MA, Malekzadeh F, Yazdi MT, Kameranpour N, Noori-Dloii MR, Matte MH, Shahamat M, Colwell RR, Sowers KR (2000) Cellulomonas persica sp. nov. and Cellulomonas iranensis sp. nov., mesophilic cellulose-degrading bacteria isolated from forest soil. Int J Syst Evol Microbiol 50:993–996

    CAS  PubMed  Google Scholar 

  • EL-Din BSMS, Attia M, Abo-Sedera SA (2000) Field assessment of composts produced by highly effective cellulolytic microorganisms. Biol Fertil Soils 32:35–40

    Google Scholar 

  • Eppard M, Krumbein WE, Koch C, Rhiel E, Staley JT, Stackebrandt E (1996) Morphological, physiological, and molecular characterization of Actinomycetes isolated from dry soil, rocks, and monument surfaces. Arch Microbiol 166:12–22

    CAS  PubMed  Google Scholar 

  • Fehrenbach H, Giegrich J, Reinhardt G et al (2008) Kriterien einer nachhaltigen Bioenergienutzung im globalen Maßstab. UBA-Forschungsbericht 206:41–112

    Google Scholar 

  • Fields MW, Mallik S, Russell JB (2000) Fibrobacter succinogenes S85 ferments ball-milled cellulose as fast as cellobiose until cellulose surface area is limiting. Appl Microbiol Biotechnol 54:570–574

    CAS  PubMed  Google Scholar 

  • Fliegerová K, Mrázek V, Hoffmann K, Zábranská J, Voigt K (2010) Diversity of anaerobic fungi within cow manure determined by ITS1 analysis. Folia Microbiol 55:319–325

    Google Scholar 

  • Gallagher J, Winters A, Barron N, McHale L, McHale AP (1996) Production of cellulase and β-glucosidase activity during growth of the actinomycete Micromonospora chalcae on cellulose-containing media. Biotechnol Lett 18:537–540

    CAS  Google Scholar 

  • Görisch U, Helm M (2006) Biogasanlagen. Planung, Einrichtung und Betrieb von landwirtschaftlichen und industriellen Biogasanlagen. Eugen Ulmer KG, Stuttgart

    Google Scholar 

  • Griffith GW, Baker S, Fliegerova K, Liggenstoffer A, van der Giezen M, Voigt K, Beakes G (2010) Anaerobic fungi: Neocallimastigomycota. IMA Fungus 1(2):181–185

    PubMed Central  PubMed  Google Scholar 

  • Hägerdahl B, Harris H, Pye EK (1979) Association of beta-glucosidase with intact cells of Thermoactinomyces. Biotechnol Bioeng 21:345–355

    Google Scholar 

  • Hamilton-Brehm SD, Mosher JJ, Vishnivetskaya T, Podar M, Carroll S, Allman S, Phelps TJ, Keller M, Elkins JG (2010) Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park. Appl Environ Microbiol 76:1014–1020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hethener P, Brauman A, García JL (1992) Clostridium termitidis sp. nov., a cellulolytic bacterium from the gut of the wood-feeding termite, Nasutitermes lujae. Syst Appl Microbiol 15:52–58

    CAS  Google Scholar 

  • Huber R, Woese CR, Langworthy TA, Kristjansson JK, Stetter KO (1990) Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the ‘Thermotogales’. Arch Microbiol 154:105–111

    CAS  Google Scholar 

  • Jin F, Toda K (1989) Purification and characterization of cellulases from Clostridium thermocopriae sp. nov. JT3-3. J Ferment Bioeng 67:8–13

    CAS  Google Scholar 

  • Kakiuchi M, Isui A, Suzuki K, Fujino T, Fujino E, Kimura T, Karita S, Sakka K, Ohmiya K (1998) Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome. J Bacteriol 180:4303–4308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamm B, Kamm M (2004) Biorefinery–systems. Chem Biochem Eng Q 18:1–6

    CAS  Google Scholar 

  • Kampmann K, Ratering S, Kramer I, Schmidt M, Zerr W, Schnell S (2012) Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. Appl Environ Microbiol 78:2106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato S, Haruta S, Cui Z, Ishii M et al (2004) Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int J Syst Evol Microbiol 54:2043–2047. doi:10.1099/ijs.0.63148-0

    PubMed  Google Scholar 

  • Kato S, Haruta S, Cui Z, Ishii M, Igarashi Y (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71:7099–7106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly WJ, Asmundson RV, Hopcroft DH (1987) Isolation and characterization of a strictly anaerobic, cellulolytic spore former: Clostridium chartatabidum sp. nov. Arch Microbiol 147:169–173

    CAS  PubMed  Google Scholar 

  • Khan AW, Meek E, Sowden LC, Colden JR (1984) Emendation of the genus Acetivibrio and description of Acetivibrio cellulosolvens sp. nov., a nonmotile cellulolytic mesophile. Int J Syst Bacteriol 34:419–422

    Google Scholar 

  • Kim CH (1995) Characterization and substrate specificity of an endo-β-1,4-D-glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans. Appl Environ Microbiol 61:959–965

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kluepfel D, Shareck F, Mondou F, Morosoli R (1986) Characterization of cellulase and xylanase activities of Streptomyces lividans. Appl Microbiol Biotechnol 24:230–234

    CAS  Google Scholar 

  • Krause L, Diaz NN, Edwards RA, Gartemann K-H, Krömeke H, Neuwger H, Pühler A, Runte KJ, Schlüter A, Stoye J, Szczepanowski R, Tauch A, Goesmann A (2008) Taxonomic composition and gene content of a methane producing microbial community isolated from a biogas reactor. J Biotechnol 136:91–101

    CAS  PubMed  Google Scholar 

  • Krauss J, Zverlov VV, Schwarz WH (2012) In vitro reconstitution of the complete Clostridium thermocellum cellulosome and synergistic activity on crystalline cellulose. Appl Environ Microbiol 78:4301–4307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kröber M, Bekel T, Diaz NN, Goesmann A, Sebastian J (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142:38–49

    PubMed  Google Scholar 

  • Kruus K, Wang WK, Ching J, David Wu JH (1995) Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. J Bacteriol 177:1641–1644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kukolya J, Nagy I, Láday M, Tóth E, Oravecz O, Márialigeti K, Hornok L (2002) Thermobifida cellulolytica sp. nov., a novel lignocellulose-decomposing actinomycete. Int J Syst Evol Microbiol 52:1193–1199

    CAS  PubMed  Google Scholar 

  • Kurokawa J, Hemjinda E, Arai T, Kimura T, Sakka K, Ohmiya K (2002) Clostridium thermocellum cellulase CelT, a family 9 endoglucanase without an Ig-like domain or family 3c carbohydrate-binding module. Appl Microbiol Biotechnol 59:455–461

    CAS  PubMed  Google Scholar 

  • Lamed R, Naimark J, Morgenstern E, Bayer EA (1987) Specialized surface structure in cellulolytic bacteria. J Bacteriol 169:3792–3800

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lamed R, Morag E, Moryosef O, Bayer EA (1991) Cellulosome-like entities in Bacteroides cellulosolvens. Curr Microbiol 22:27–34

    CAS  Google Scholar 

  • Leary JV, Nelson N, Tisserat B, Allingham EA (1986) Isolation of pathogenic Bacillus circulans from callus cultures and healthy offshoots of date palm (Phoenix dactylifera L.). Appl Environ Microbiol 52:1173–1176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lebuf V, Accoe F, Vaneecjaute C, Meers E et al (2012) Nutrient recovery from digestates: techniques and end products. In: Fourth international symposium on energy from biomass and waste, Venice

    Google Scholar 

  • Lednicka D, Mergaert J, Cnockaert MC, Swings J (2000) Isolation and identification of cellulolytic bacteria involved in the degradation of natural cellulosic fibres. Syst Appl Microbiol 23:292–299

    CAS  PubMed  Google Scholar 

  • Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426

    CAS  PubMed  Google Scholar 

  • Li X, Gao P (1997) Isolation and partial properties of cellulose-decomposing strain of Cytophaga sp. LX-7 from soil. J Appl Microbiol 82:73–80

    CAS  Google Scholar 

  • Li X, Chen H, Ljungdahl L (1997) Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulase-hemicellulase complex. Appl Environ Microbiol 63:4721–4728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lunsford JH (2000) Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal Today 63:165–174

    CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(4):739

    PubMed Central  Google Scholar 

  • MacKenzie CR, Bilous D, Johnson KG (1984) Purification and characterization of an exoglucanase from Streptomyces flavogriseus. Can J Microbiol 30:1171–1178

    CAS  PubMed  Google Scholar 

  • Madden RH (1983) Isolation and characterization of Clostridium stercorarium sp. nov., cellulolytic thermophile. Int J Syst Bacteriol 33:817–840

    Google Scholar 

  • Maréchal J, Clement B, Nalin R, Gandon C, Orso S, Cvejic JH, Bruneteau M, Berry A, Normand P (2000) A recA gene phylogenetic analysis confirms the close proximity of Frankia to Acidothermus. Int J Syst Evol Microbiol 50:781–785

    PubMed  Google Scholar 

  • Méndez BS, Pettinari MJ, Ivanier SE, Ramos CA, Sineriz F (1991) Clostridium thermopapyrolyticum sp. nov., a cellulolytic thermophile. Int J Syst Bacteriol 41:281–283

    Google Scholar 

  • Miroshnichenko ML, Kublanov IV, Kostrikina NA, Tourova TP, Kolganova TV, Birkeland N, Bonch-Osmolovskaya EA (2008) Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. Int J Syst Evol Microbiol 58:1492–1496

    CAS  PubMed  Google Scholar 

  • Mladenovska Z, Mathrani IM, Ahring BK (1995) Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic anaerobic bacterium. Arch Microbiol 163:223–230

    CAS  Google Scholar 

  • Monserrate E, Leschine SB, Canale-Parola E (2001) Clostridium hungatei sp. nov., a mesophilic, N2-fixing cellulolytic bacterium isolated from soil. Int J Syst Evol Microbiol 51:123–132

    CAS  PubMed  Google Scholar 

  • Mullings R, Parish JH (1984) Mesophilic aerobic Gram negative cellulose degrading bacteria from aquatic habitats and soils. J Appl Bacteriol 57:455–468

    Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    CAS  PubMed  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003a) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    CAS  PubMed  Google Scholar 

  • Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RP, Langan P (2003b) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017

    CAS  PubMed  Google Scholar 

  • Nishiyama T, Ueki A, Kaku N, Ueki K (2009) Clostridium sufflavum sp. nov., isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol 59:981–986

    CAS  PubMed  Google Scholar 

  • Noike T, Endo G, Chang JE, Yaguchi JI et al (1985) Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic-digestion. Biotechnol Bioeng 27:1482–1489

    CAS  PubMed  Google Scholar 

  • Ohara H, Karita S, Kimura T, Sakka K, Ohmiya K (2000) Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci Biotechnol Biochem 64:254–260

    CAS  PubMed  Google Scholar 

  • Olson DG, Giannone RJ, Hettich RL, Lynd LR (2013) Role of the CipA scaffoldin protein in cellulose solubilization, as determined by targeted gene deletion and complementation in Clostridium thermocellum. J Bacteriol 195:733–739. doi:10.1128/JB.02014-12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pagés S, Gal L, Bélaich A, Gaudin C, Tardif C, Bélaich JP (1997) Role of scaffolding protein CipC of Clostridium cellulolyticum in cellulose degradation. J Bacteriol 179:2810–2816

    PubMed Central  PubMed  Google Scholar 

  • Palop ML, Valles S, Pinaga F, Flors A (1989) Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium celerecrescens sp. nov. Int J Syst Bacteriol 39:68–71

    Google Scholar 

  • Perito B, Hanhart E, Irdani T, Iqbal M, McCarthy AJ, Mastromei G (1994) Characterization and sequence analysis of a Streptomyces rochei A2 endoglucanase-encoding gene. Gene 148:119–124

    CAS  PubMed  Google Scholar 

  • Pohlschröder M, Canale-Parola E, Leschine SB (1995) Ultrastructural diversity of the cellulase complexes of Clostridium papyrosolvens C7. J Bacteriol 177:6625–6629

    PubMed Central  PubMed  Google Scholar 

  • Ponpium P, Ratanakhanokchai K, Kyu KL (2000) Isolation and properties of a cellulosome-type multienzyme complex of the thermophilic Bacteroides sp. strain P-1. Enzyme Microb Technol 26:459–465

    CAS  PubMed  Google Scholar 

  • Rabinovich ML, Melnik MS, Bolobova AV (2002) Microbial cellulases (review). Appl Biochem Microbiol 38:4

    Google Scholar 

  • Rainey FA, Donnison AM, Janssen PH, Saul D, Rodrigo A, Bergquist PL, Daniel RM, Stackebrandt E, Morgan HW (1994) Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov.: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett 120:263–266

    CAS  PubMed  Google Scholar 

  • Robert C, Chassard C, Lawson PA, Bernalier-Donadille A (2007) Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community. Int J Syst Evol Microbiol 57:1516–1520

    PubMed  Google Scholar 

  • Sabathé F, Bélaïch A, Soucaille P (2002) Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. FEMS Microbiol Lett 217:15–22

    PubMed  Google Scholar 

  • Schellhorn HE, Forsberg CW (1984) Multiplicity of extracellular β-(1,4)-endoglucanases of Bacteroides succinogenes S85. Can J Microbiol 30:930–937

    CAS  Google Scholar 

  • Schlüter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, Krahn I, Krause L, Krömeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Pühler A, Runte KJ, Szczepanpwski R, Tauch A, Tilker A, Viehöver P, Goessmann A (2008) The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analyzed by the 454-pyrosequencing technology. J Biotechnol 136:77–90

    PubMed  Google Scholar 

  • Schmack D, Reuter M (2010) Microorganisms for liquefying biomasses (EN)/Mikroorganismen zur Verflüssigung von biomasse (DE). Schmack Biogas, Patent: WO 2010/102618

    Google Scholar 

  • Schnürer A, Jarvis Å (2009) Microbiological handbook for biogas plants. Swedish Waste Management U2009:03 Swedish Gas Centre Report 207

    Google Scholar 

  • Schrempf H, Walter S (1995) The cellulolytic system of Streptomyces reticuli. Int J Biol Macromol 17:353–355

    CAS  PubMed  Google Scholar 

  • Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:635–649

    Google Scholar 

  • Schwarz WH (2004) Cellulose – Struktur ohne Ende. Naturwiss Rundschau 8:443–445

    Google Scholar 

  • Schwarz WH, Bronnenmeier K, Landmann B, Wanner G, Staudenbauer WL, Kurose N, Takayama T (1995) Molecular characterization of four strains of the cellulolytic thermophile Clostridium stercorarium. Biosci Biotechnol Biochem 59:1661–1665

    CAS  Google Scholar 

  • Schwarz WH, Zverlov VV, Bahl H (2004) Extracellular glycosyl hydrolases from clostridia. Adv Appl Microbiol 56:215–261

    CAS  PubMed  Google Scholar 

  • Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K (2009) Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int J Syst Evol Microbiol 59:1764–1770

    CAS  PubMed  Google Scholar 

  • Shoseyov O, Doi RH (1990) Essential 170-kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase. Proc Natl Acad Sci U S A 87:2192–2195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simankova MV, Chernych NA, Osipov GA, Zavarzin GA (1993) Halocella cellulolytica, gen. nov. sp. nov., a new obligately anaerobic, halophilic, cellulolytic bacterium. Syst Appl Microbiol 16:385–389

    CAS  Google Scholar 

  • Sunna A, Gibbs MD, Chin CW, Nelson PJ, Bergquist PL (2000) A gene encoding a novel multidomain beta-1,4-mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp. Appl Environ Microbiol 66:664–670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Svetlichnyi VA, Svetlichnaya TP, Chernykh NA, Zavarzin GA (1990) Anaerocellum thermophilum gen. nov., sp. nov.: an extremely thermophilic cellulolytic eubacterium isolated from hot springs in the valley of geysers. Microbiology (Rus) 59:598–604

    Google Scholar 

  • Tamaru Y, Karita S, Ibrahim A, Chan H, Doi RH (2000) A large gene cluster for the Clostridium cellulovorans cellulosome. J Bacteriol 182:5906–5910

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thayer DW, Lowther SV, Phillips JG (1984) Cellulolytic activities of the genus Cellulomonas. Int J Syst Bacteriol 34:432–438

    CAS  Google Scholar 

  • Van Zyl WH (1985) A Study of the cellulases produced by three mesophilic actinomycetes grown on bagasse as substrate. Biotechnol Bioeng 27:1367–1373

    PubMed  Google Scholar 

  • Varel VH, Yen JT, Kreikemeier KK (1995) Addition of cellulolytic clostridia to the bovine rumen and pig intestinal tract. Appl Environ Microbiol 61:1116–1119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vazana Y, Moraïs S, Barak Y, Lamed R, Bayer EA (2012) Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Methods Enzymol 510:429–452. doi:10.1016/B978-0-12-415931-0.00023-9

    CAS  PubMed  Google Scholar 

  • Warnick TA, Methe BA, Leschine SB (2002) Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52:1155–1160

    CAS  PubMed  Google Scholar 

  • Weiland P (2006) Biomass digestion in agriculture: a successful pathway for the energy production and waste treatment in Germany. Eng Life Sci 6:302–309

    CAS  Google Scholar 

  • Wilson DB (1992) Biochemistry and genetics of actinomycete cellulases. Crit Rev Biotechnol 12:45–63

    CAS  PubMed  Google Scholar 

  • Wirth R, Kovacs E, Maroti G, Bagi Z, Rakhely G, Kovacs KL (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 5:41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang JC, Chynoweth DP, Williams DS, Li A (1990) Clostridium aldrichii sp. nov., a cellulolytic mesophile inhabiting a wood-fermenting anaerobic digester. Int J Syst Bacteriol 40:268–272

    CAS  PubMed  Google Scholar 

  • Yanling H, Youfang D, Yanquan L (1991) Two cellulolytic Clostridium species: Clostridium cellulosi sp. nov. and Clostridium cellulofermentans sp. nov. Int J Syst Bacteriol 41:306–309

    Google Scholar 

  • Zhang L, Jiang C, Chen W (2002) Streptosporangium subroseum sp. nov., actinomycete with an unusual phospholipid pattern. Int J Syst Evol Microbiol 52:1235–1238

    CAS  PubMed  Google Scholar 

  • Zhilina TN, Kevbrin VV, Turova TP, Lysenko AM et al (2005) Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Mikrobiologiia 74:642–653

    CAS  PubMed  Google Scholar 

  • Zverlov VV, Schwarz WH (2008) Bacterial cellulose hydrolysis in anaerobic environmental systems Clostridium thermocellum and Clostridium stercorarium, thermophilic plant fibre degraders. Ann N Y Acad Sci 1125:298–307

    CAS  PubMed  Google Scholar 

  • Zverlov V, Velikodvorskaya G, Schwarz W, Bronnenmeier K et al (1998) Multidomain structure and cellulosomal localization of the Clostridium thermocellum cellobiohydrolase CbhA. J Bacteriol 180:3091–3099

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zverlov VV, Velikodvorskaya GA, Schwarz WH (2002) A newly described cellulosomal cellobiohydrolase, CelO, from Clostridium thermocellum: investigation of the exo- mode of hydrolysis, and binding capacity to crystalline cellulose. Microbiology 148:247–255

    CAS  PubMed  Google Scholar 

  • Zverlov VV, Velikodvorskaya GA, Schwarz WH (2003) Two new cellulosome components encoded downstream of celI in the genome of Clostridium thermocellum: the non-processive endoglucanase CelN and the possibly structural protein CseP. Microbiology 149:515–524

    CAS  PubMed  Google Scholar 

  • Zverlov VV, Kellermann J, Schwarz WH (2005a) Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major components and detection of three new enzymes. Proteomics 5:3646–3653

    CAS  PubMed  Google Scholar 

  • Zverlov VV, Schantz N, Schwarz WH (2005b) A major new component in the cellulosome of Clostridium thermocellum is a processive endo-beta-1,4-glucanase producing cellotetraose. FEMS Microbiol Lett 249:353–358

    CAS  PubMed  Google Scholar 

  • Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597

    CAS  PubMed  Google Scholar 

  • Zverlov VV, Klupp M, Krauss J, Schwarz WH (2008) Mutants in the scaffoldin gene cipA of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline cellulose. J Bacteriol 190:4321–4327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zverlov VV, Hiegl W, Köck DE, Kellermann J, Köllmeier T, Schwarz WH (2010) Hydrolytic bacteria in mesophilic and thermophilic degradation of plant biomass. Eng Life Sci 6:528–536

    Google Scholar 

Download references

Acknowledgments

The project was supported by grant SCHW 489 “Functional genomics of the Clostridium thermocellum cellulosome” (DFG, German Research Foundation), by grant 703SF0346C “FABES: Mikrobiologische Optimierung der Hydrolyse und ökologisch-ökonomische Bewertung” (German Federal Ministry of Food, Agriculture, and Consumer Protection), by grant 220017012 “Etablierung eines core-Mikrobioms für Biogasanlagen,” by grant 03SF0440E “Verbundvorhaben BIOGAS-MARKER: Bioindikatoren der Biogasfermentation” (German Federal Ministry of Education and Research) to WHS, and the members of BCN (Biogas Competence Network, http://www.biogas-network.de/) by repeated discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang H. Schwarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zverlov, V.V., Köck, D.E., Schwarz, W.H. (2015). The Role of Cellulose-Hydrolyzing Bacteria in the Production of Biogas from Plant Biomass. In: Kamm, B. (eds) Microorganisms in Biorefineries. Microbiology Monographs, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45209-7_12

Download citation

Publish with us

Policies and ethics