Skip to main content

Antifouling Surfaces of Self-assembled Thin Layer

  • Chapter
  • First Online:

Abstract

Advances in new technologies such as biosensors, biomedical implants rely greatly on the performance of devices. In this chapter, strategies for preventing fouling of proteins, bacteria, and marine fouling organisms by using self-assembled thin layers are reviewed. One of the commonly used methods for inhibiting the adhesion of proteins, bacteria, and marine organisms is the modification of the surfaces with poly(ethylene glycol) (PEG) monolayers or PEG-based alternatives, others such as oligo(ethylene glycol), zwitterionic molecules, enzymes, and functional polymers have also been used for antifouling materials with much less environmental impact than traditional biocides. Protein-resistant coatings may also resist bacterial attachment and the subsequent biofilm formation. The emergence of environmental issues has necessitated the development of nontoxic and biocompatible antifouling surfaces under marine environments. Although considerable progress has been made in the design of antifouling coatings, challenges still remain, including comprehensive understanding of the underlying adhesion mechanisms, seeking for more environmentally friendly and effective, and even “universal” nonfouling materials in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492

    Google Scholar 

  2. Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75

    Google Scholar 

  3. Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun 2:1–10

    Google Scholar 

  4. Langer R (2001) Drugs on target. Science 293:58–59

    Google Scholar 

  5. Messersmith PB, Textor M (2007) Enzymes on nanotubes thwart fouling. Nat Nanotechnol 2:138–139

    Google Scholar 

  6. Lejars M, Margaillan A, Bressy C (2012) Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev 112(8):4347–4390

    Google Scholar 

  7. Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27(1):87–98

    Google Scholar 

  8. Townsin RL (2003) The ship hull fouling penalty. Biofouling 19:9–15

    Google Scholar 

  9. Almeida E, Diamantino TC, de Sousa O (2007) Marine paints: the particular case of antifouling paints. Prog Org Coat 59(1):2–20

    Google Scholar 

  10. Lynch AS, Robertson GT (2008) Bacterial and fungal biofilm infections. Ann Rev Med 59:415–428

    Google Scholar 

  11. Callow ME, Callow JA (2002) Marine biofouling: a sticky problem. Biologist 49:1–5

    Google Scholar 

  12. Chambers LD, Stokes KR, Walsh FC, Wood RJK (2006) Modern approaches to marine antifouling coatings. Surf Coat Technol 201:3642–3652

    Google Scholar 

  13. Callow JA, Callow ME (2006) Biofilms. Prog Mol Subcell Bio 42:141–169

    Google Scholar 

  14. Haynes CA, Norde W (1994) Globular proteins at solid/liquid interfaces. Colloid Surf B: Biointerfaces 2:517–566

    Google Scholar 

  15. Israelachvili J, Wennerstrom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379:219–225

    Google Scholar 

  16. Kidoaki S, Matsuda T (2002) Mechanistic aspects of protein/material interactions probed by atomic force microscopy. Colloid Surf B: Biointerfaces 23:153–163

    Google Scholar 

  17. Xu L-C, Logan BE (2005) Interaction Forces between colloids and protein-coated surfaces measured using an atomic force microscope. Environ Sci Technol 39:3592–3600

    Google Scholar 

  18. Zhang X, Du X, Huang X, Lv Z (2013) Creating protein-imprinted self-assembled monolayers with multiple binding sites and biocompatible imprinted cavities. J Am Chem Soc 135(25):9248–9251

    Google Scholar 

  19. Prime KL, Whitesides GM (1993) Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. J Am Chem Soc 115:10714–10721

    Google Scholar 

  20. Hucknall A, Rangarajan S, Chilkoti A (2009) In pursuit of zero: polymer brushes that resist the adsorption of proteins. Adv Mater 21(23):2441–2446

    Google Scholar 

  21. Page K, Wilson M, Parkin IP (2009) Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J Mater Chem 19(23):3819–3831

    Google Scholar 

  22. Tuson HH, Weibel DB (2013) Bacteria-surface interactions. Soft Matter 9(18):4368–4380

    Google Scholar 

  23. Schumacher JF, Aldred N, Callow ME, Finlay JA, Callow JA, Clare AS, Brennan AB (2007) Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids. Biofouling 23 (5):307–317

    Google Scholar 

  24. Yuan L, Yu Q, Li D, Chen H (2011) Surface modification to control protein/surface interactions. Macromol Biosci 11(8):1031–1040

    Google Scholar 

  25. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6):690–718

    Google Scholar 

  26. Genzer J, Efimenko K (2006) Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22 (5):339–360

    Google Scholar 

  27. Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci USA 99(19):12252–12256

    Google Scholar 

  28. Ma H, Hyun J, Stiller P, Chilkoti A (2004) “Non-fouling” oligo(ethylene glycol)- functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv Mater 16:338–341

    Google Scholar 

  29. Wan F, Pei X, Yu B, Ye Q, Zhou F, Xue Q (2012) Grafting polymer brushes on biomimetic structural surfaces for anti-algae fouling and foul release. ACS Appl Mater Interfaces 4(9):4557–4565

    Google Scholar 

  30. Ye Q, Gao T, Wan F, Yu B, Pei X, Zhou F, Xue Q (2012) Grafting poly(ionic liquid) brushes for anti-bacterial and anti-biofouling applications. J Mater Chem 22(26):13123–13131

    Google Scholar 

  31. Chang Y, Shih Y-J, Lai C-J, Kung H-H, Jiang S (2013) Blood-inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes in human whole blood. Adv Funct Mater 23(9):1100–1110

    Google Scholar 

  32. Jiang S, Cao Z (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22(9):920–932

    Google Scholar 

  33. Herrwerth S, Eck W, Reinhardt S, Grunze M (2003) Factors that determine the protein resistance of oligoether self-assembled monolayers-internal hydrophilicity, terminal hydrophilicity, and lateral packing density. J Am Chem Soc 125:9359–9366

    Google Scholar 

  34. Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620

    Google Scholar 

  35. Gudipati CS, Finlay JA, Callow JA, Callow ME, Wooley KL (2005) The antifouling and fouling-release perfomance of hyperbranched fluoropolymer (HBFP)-poly(ethyleneglycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga ulva. Langmuir 21:3044–3053

    Google Scholar 

  36. Cao L, Chang M, Lee CY, Castner DG, Sukavaneshvar S, Ratner BD, Horbett TA (2007) Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition. J Biomed Mater Res Part A 81(4):827–837

    Google Scholar 

  37. Luk Y-Y, Kato M, Mrksich M (2000) Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16:9604–9608

    Google Scholar 

  38. Chapman RG, Ostuni E, Liang MN, Meluleni G, Kim E, Yan L, Pier G, Warren HS, Whitesides GM (2001) Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir 17:1225–1233

    Google Scholar 

  39. Statz AR, Meagher RJ, Barron AE, Messersmith PB (2005) New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc 127:7972–7973

    Google Scholar 

  40. Chelmowski R, Köster SD, Kerstan A, Prekelt A, Grunwald C, Winkler T, Metzler-Nolte N, Terfort A, Wöll C (2008) Peptide-based SAMs that resist the adsorption of proteins. J Am Chem Soc 130:14952–14953

    Google Scholar 

  41. Chen S, Zheng J, Li L, Jiang S (2005) Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. J Am Chem Soc 127:14473–14478

    Google Scholar 

  42. Gu H, Hou S, Yongyat C, De Tore S, Ren D (2013) Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms. Langmuir 29(35):11145–11153

    Google Scholar 

  43. Pale-Grosdemange C, Simon ES, Prime KL, Whitesides GM (1991) Formation of self-assembled monolayers by chemisorption of derivatives of oligo(ethylene glycol) of structure HS(CH2)11(OCH2CH2)mOH on gold. J Am Chem Soc 113:12–20

    Google Scholar 

  44. Bearinger JP, Terrettaz S, Michel R, Tirelli N, Vogel H, Textor M, Hubbell JA (2003) Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat Mater 2(4):259–264

    Google Scholar 

  45. Harder P, Grunze M, Dahint R, Whitesides GM, Laibinis PE (1998) Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J Phys Chem B 102:426–436

    Google Scholar 

  46. Li L, Chen S, Zheng J, Ratner BD, Jiang S (2005) Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior. J Phys Chem B 109:2934–2941

    Google Scholar 

  47. McPherson T, Kidane A, Szleifer I, Park K (1998) Prevention of protein adsorption by tethered poly(ethylene oxide) layers: experiments and single-chain mean-field analysis. Langmuir 14:176–186

    Google Scholar 

  48. Zhang Z, Chen S, Jiang S (2006) Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 7:3311–3315

    Google Scholar 

  49. Jeon SI, Lee JH, Andrade JD, De Gennes PG (1991) Protein-surface interactions in the presence of polyethylene oxide: I. Simplified theory. Interface Sci 142:149–158

    Google Scholar 

  50. Wischerhoff E, Uhlig K, Lankenau A, Borner HG, Laschewsky A, Duschl C, Lutz JF (2008) Controlled cell adhesion on PEG-based switchable surfaces. Angew Chem Int Ed 47(30):5666–5668

    Google Scholar 

  51. Zhanga M, Desaia T, Ferraria M (1998) Proteins and cells on PEG immobilized silicon surfaces. Biomaterials 19:953–960

    Google Scholar 

  52. Harris JM (1992) Poly(ethylene Glycol) chemistry: biotechnical and biomedical applications. Plenum, New York

    Google Scholar 

  53. Desai NP, Hubbell JA (1991) Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces. J Biomed Mater Res 25:829–843

    Google Scholar 

  54. Gombotz WR, Guanghui W, Horbett TA, Hoffman AS (1991) Protein adsorption to poly(ethylene oxide) surfaces. J Biomed Mater Res 25:1547–1562

    Google Scholar 

  55. Jeon SI, Lee JH, Andrade JD, Gennes PGD (1991) Protein-surface interactions in the presence of polyethylene oxide I. Simplified theory. J Colloid Interface Sci 142:149–158

    Google Scholar 

  56. Jeyachandran YL, Zharnikov M (2012) Comprehensive analysis of the effect of electron irradiation on oligo(ethylene glycol) terminated self-assembled monolayers applicable for specific and nonspecific patterning of proteins. J Phys Chem C 116(28):14950–14959

    Google Scholar 

  57. Chen CS, Mrksich M, Huang S, Whitesides GM, Donald E., Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428

    Google Scholar 

  58. Herrwerth S, Eck W, Reinhardt S, Grunze M (2003) Factors that determine the protein resistance of oligoether self-assembled monolayers-internal hydrophilicity, terminal hydrophilicity, and lateral packing density. J Am Chem Soc 125:9359–9366

    Google Scholar 

  59. Vanderah DJ, Valincius G, Meuse CW (2002) Self-assembled monolayers of methyl 1-thiahexa(ethyleneoxide) for the inhibition of protein adsorption. Langmuir 18:4674–4680

    Google Scholar 

  60. Vanderah DJ, La H, Naff J, Silin V, Rubinson KA (2004) Control of protein adsorption: molecular level structural and spatial variables. J Am Chem Soc 126:13639–13641

    Google Scholar 

  61. Morra M (2000) On the molecular basis of fouling resistance. J Biomater Sci, Polym Ed 11(6):547–569

    Google Scholar 

  62. Wang RLC, Kreuzer HJ (1997) Molecular conformation and solvation of oligo(ethylene glycol)-terminated self-assembled monolayers and their resistance to protein adsorption. J Phys Chem B 101:9767–9773

    Google Scholar 

  63. Pertsin AJ, Grunze M (2000) Computer simulation of water near the surface of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir 16:8829–8841

    Google Scholar 

  64. Ye X, Gong J, Wang Z, Zhang Z, Han S, Jiang X (2013) Hybrid POSS-containing brush on gold surfaces for protein resistance. Macromol Biosci 13(7):921–926

    Google Scholar 

  65. Flavel BS, Jasieniak M, Velleman L, Ciampi S, Luais E, Peterson JR, Griesser HJ, Shapter JG, Gooding JJ (2013) Grafting of poly(ethylene glycol) on click chemistry modified Si(100) surfaces. Langmuir 29(26):8355–8362

    Google Scholar 

  66. Zoulalian V, Zurcher S, Tosatti S, Textor M, Monge S, Robin JJ (2010) Self-assembly of poly(ethylene glycol)-poly(alkyl phosphonate) terpolymers on titanium oxide surfaces: synthesis, interface characterization, investigation of nonfouling properties, and long-term stability. Langmuir 26(1):74–82

    Google Scholar 

  67. Ju H, McCloskey BD, Sagle AC, Kusuma VA, Freeman BD (2009) Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials. J Memb Sci 330:180–188

    Google Scholar 

  68. Dalsin JL, Lin L, Tosatti S, Voros J, Textor M, Messersmith PB (2005) Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir 21:640–646

    Google Scholar 

  69. Dalsin JL, Hu B-H, Lee BP, Messersmith PB (2003) Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc 125:4253–4258

    Google Scholar 

  70. Wach JY, Malisova B, Bonazzi S, Tosatti S, Textor M, Zurcher S, Gademann K (2008) Protein-resistant surfaces through mild dopamine surface functionalization. Chem Eur J 14(34):10579–10584

    Google Scholar 

  71. Sever MJ, Weisser JT, Monahan J, Srinivasan S, Wilker JJ (2004) Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angew Chem Int Ed 43(4):448–450

    Google Scholar 

  72. Zurcher S, Wackerlin D, Bethuel Y, Malisova B, Textor M, Tosatti S, Gademann K (2006) Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin. J Am Chem Soc 128:1064–1065

    Google Scholar 

  73. Jin J, Jiang W, Yin J, Ji X, Stagnaro P (2013) Plasma proteins adsorption mechanism on polyethylene-grafted pol (ethylene glycol) surface by quartz crystal microbalance with dissipation. Langmuir 29(22):6624–6633

    Google Scholar 

  74. Soteropulos CE, Zurick KM, Bernards MT, Hunt HK (2012) Tailoring the protein adsorption properties of whispering gallery mode optical biosensors. Langmuir 28(44):15743–15750

    Google Scholar 

  75. Malmsten M, Emoto K, Alstine JMV (1998) Effect of chain density on inhibition of protein adsorption by poly(ethylene glycol) based coatings. J Colloid Interface Sci 202:507–517

    Google Scholar 

  76. Zhu X-Y, Jun Y, Staarup DR, Major RC, Danielson S, Boiadjiev V, Gladfelter WL, Bunker BC, Guo A (2001) Grafting of high-density poly(ethylene glycol)monolayers on Si(111). Langmuir 17:7798–7803

    Google Scholar 

  77. Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620

    Google Scholar 

  78. Leckband D, Sheth S, Halperin A (1999) Grafted poly(ethylene oxide) brushes as nonfouling surface coatings. J Biomater Sci, Polym Ed 10(10):1125–1147

    Google Scholar 

  79. Urakami H, Guan Z (2008) Living ring-opening polymerization of a carbohydrate-derived lactone for the synthesis of protein-resistant biomaterials. Biomacromolecules 9:592–597

    Google Scholar 

  80. Deng L, Mrksich M, Whitesides GM (1996) Self-assembled monolayers of alkanethiolates presenting tri(propylene sulfoxide) groups resist the adsorption of protein. J Am Chem Soc 118:5136–5137

    Google Scholar 

  81. Chapman RG, Ostuni E, Takayam S, Holmlin RE, Yan L, Whitesides GM (2000) Surveying for surfaces that resist the adsorption of proteins. J Am Chem Soc 122:8303–8304

    Google Scholar 

  82. McPherson T, Kidane A, Szleifer I, Park K (1998) Prevention of protein adsorption by tethered poly(ethylene oxide) layers: experiments and single-chain mean-field analysis. Langmuir 14:176–186

    Google Scholar 

  83. Feldman K, Hahner G, Spencer ND, Harder P, Grunze M (1999) Probing resistance to protein adsorption of oligo(ethyleneglycol)-terminated self-assembled monolayers by scanning force microscopy. J Am Chem Soc 121:10134–10141

    Google Scholar 

  84. Mi L, Jiang S (2014) Integrated antimicrobial and nonfouling zwitterionic polymers. Angew Chem Int Ed 53:2–11

    Google Scholar 

  85. Chen S, Yu F, Yu Q, He Y, Jiang S (2006) Strong resistance of a thin crystalline layer of balanced charged groups to protein adsorption. Langmuir 22:8186–8191

    Google Scholar 

  86. Holmlin RE, Chen X, Chapman RG, Takayama S, Whitesides GM (2001) Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17:2841–2850

    Google Scholar 

  87. Gui AL, Luais E, Peterson JR, Gooding JJ (2013) Zwitterionic phenyl layers: finally, stable, anti-biofouling coatings that do not passivate electrodes. ACS Appl Mater Interfaces 5(11):4827–4835

    Google Scholar 

  88. Dalsin JL, Messersmith PB (2005) Bioinspired antifouling polymers. Mater Today 8(9):38–46

    Google Scholar 

  89. Chen S, Cao Z, Jiang S (2009) Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials 30(29):5892–5896

    Google Scholar 

  90. Siegers C, Biesalski M, Haag R (2004) Self-assembled monolayers of dendritic polyglycerol derivatives on gold that resist the adsorption of proteins. Chem Eur J 10(11):2831–2838

    Google Scholar 

  91. Wyszogrodzka M, Haag R (2009) Synthesis and characterization of glycerol dendrons, self-assembled monolayers on gold: a detailed study of their protein resistance. Biomacromolecules 10:1043–1054

    Google Scholar 

  92. Metzke M, Bai JZ, Guan Z (2003) A novel carbohydrate-derived side-chain polyether with excellent protein resistance. J Am Chem Soc 125:7760–7761

    Google Scholar 

  93. McArthur SL, McLean KM, Kingshott P, John HAWS, Chatelier RC, Griesser HJ (2000) Effect of polysaccharide structure on protein adsorption. Colloids Surf B 17:37–48

    Google Scholar 

  94. Roosjen A, Mei HCvd, Busscher HJ, Norde W (2004) Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature. Langmuir 20:10949–10955

    Google Scholar 

  95. Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE, Whitesides GM (2001) Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 17:6336–6343

    Google Scholar 

  96. Tedjo C, Neoh KG, Kang ET, Fang N, Chan V (2007) Bacteria-surface interaction in the presence of proteins and surface attached poly(ethylene glycol) methacrylate chains. J Biomed Mater Res Part A 82(2):479–491

    Google Scholar 

  97. Kenan DJ, Walsh EB, Meyers SR, O'Toole GA, Carruthers EG, Lee WK, Zauscher S, Prata CA, Grinstaff MW (2006) Peptide-PEG amphiphiles as cytophobic coatings for mammalian and bacterial cells. Chem Biol 13(7):695–700

    Google Scholar 

  98. Saldarriaga FIC, van der Mei HC, Lochhead MJ, Grainger DW, Busscher HJ (2007) The inhibition of the adhesion of clinically isolated bacterial strains on multi-component cross-linked poly(ethylene glycol)-based polymer coatings. Biomaterials 28:4105–4112

    Google Scholar 

  99. Park KD, Kim YS, Han DK, Kim YH, Lee EHB, Suh H, Choi KS (1998) Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 19:851–859

    Google Scholar 

  100. Serrano Â, Sterner O, Mieszkin S, Zürcher S, Tosatti S, Callow ME, Callow JA, Spencer ND (2013) Nonfouling response of hydrophilic uncharged polymers. Adv Funct Mater 23(46):5706–5718

    Google Scholar 

  101. Krishnan S, Wang N, Ober CK, Finlay JA, Callow ME, Callow JA, Hexemer A, Sohn KE, Kramer EJ, Fischer DA (2006) Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom navicula and the green alga Ulva. Biomacromolecules 7:1449–1462

    Google Scholar 

  102. Bowen J, Pettitt ME, Kendall K, Leggett GJ, Preece JA, Callow ME, Callow JA (2007) The influence of surface lubricity on the adhesion of Navicula perminuta and Ulva linza to alkanethiol self-assembled monolayers. J R Soc Interface 4(14):473–477

    Google Scholar 

  103. Finlay JA, Krishnan S, Callow ME, Callow JA, Dong R, Asgill N, Wong K, Kramer EJ, Ober CK (2008) Settlement of Ulva zoospores on patterned fluorinated and PEGylated monolayer surfaces. Langmuir 24:503–510

    Google Scholar 

  104. Statz A, Finlay J, Dalsin J, Callow M, Callow JA, Messersmith PB (2006) Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels. Biofouling 22 (6):391–399

    Google Scholar 

  105. Gudipati CS, Finlay JA, Callow JA, Callow ME, Wooley KL (2005) The antifouling and fouling-release perfomance of hyperbranched fluoropolymer (HBFP)—poly(ethyleneglycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva. Langmuir 21:3044–3053

    Google Scholar 

  106. Joshi RG, Goel A, Mannari VM, Finlay JA, Callow ME, Callow JA (2009) Evaluating fouling-resistance and fouling-release performance of smart polyurethane surfaces: an outlook for efficient and environmentally benign marine coatings. J Appl Polym Sci 114(6):3693–3703

    Google Scholar 

  107. Bauer S, Arpa-Sancet MP, Finlay JA, Callow ME, Callow JA, Rosenhahn A (2013) Adhesion of marine fouling organisms on hydrophilic and amphiphilic polysaccharides. Langmuir 29(12):4039–4047

    Google Scholar 

  108. Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology–past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50(2):75–104

    Google Scholar 

  109. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 211:831–835

    Google Scholar 

  110. Tong W, Song X, Gao C (2012) Layer-by-layer assembly of microcapsules and their biomedical applications. Chem Soc Rev 41(18):6103–6124

    Google Scholar 

  111. Gribova V, Auzely-Velty R, Picart C (2012) Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering. Chem Mater 24(5):854–869

    Google Scholar 

  112. Yan Y, Such GK, Johnston APR, Lomas H, Caruso F (2011) Toward therapeutic delivery with layer-by-layer engineered particles. ACS Nano 5:4252–4257

    Google Scholar 

  113. Elbert DL, Hubbell JA (1996) Surface treatments of polymers for biocompatibility. Annu Rev Mater Sci 26:365–394

    Google Scholar 

  114. Gergely C, Bahi S, Szalontai B, Flores H, Schaaf P, Voegel J-C, Cuisinier FJG (2004) Human serum albumin self-assembly on weak polyelectrolyte multilayer films structurally modified by pH changes. Langmuir 20:5575–5582

    Google Scholar 

  115. Salloum DS, Schlenoff JB (2004) Protein adsorption modalities on polyelectrolyte multilayers. Biomacromolecules 5:1089–1096

    Google Scholar 

  116. Ladam G, Schaaf P, Cuisinier FJG, Decher G, Voegel J-C (2001) Protein adsorption onto auto-assembled polyelectrolyte films. Langmuir 17:878–882

    Google Scholar 

  117. Klitzing Rv (2006) Internal structure of polyelectrolyte multilayer assemblies. Phys Chem Chem Phys 8(43):5012–5033

    Google Scholar 

  118. Richert L, Engler AJ, Discher DE, Picart C (2004) Elasticity of native and cross-linked polyelectrolyte multilayer films. Biomacromolecules 5:1908–1916

    Google Scholar 

  119. Schneider A, Vodouhe C, Richert L, Francius G, Guen EL, Schaaf P, Voegel J-C, Frisch B, Picart C (2007) Multifunctional polyelectrolyte multilayer films: combining mechanical resistance, biodegradability, and bioactivity. Biomacromolecules 8:139–145

    Google Scholar 

  120. Wang BL, Ren KF, Chang H, Wang JL, Ji J (2013) Construction of degradable multilayer films for enhanced antibacterial properties. ACS Appl Mater Interfaces 5(10):4136–4143

    Google Scholar 

  121. Tang L, Gu W, Yi P, Bitter JL, Hong JY, Fairbrother DH, Chen KL (2013) Bacterial anti-adhesive properties of polysulfone membranes modified with polyelectrolyte multilayers. J Membr Sci 446:201–211

    Google Scholar 

  122. Guntari SN, Wong EH, Goh TK, Chandrawati R, Blencowe A, Caruso F, Qiao GG (2013) Low-fouling, biospecific films prepared by the continuous assembly of polymers. Biomacromolecules 14(8):2477–2483

    Google Scholar 

  123. An Q, Brinkmann J, Huskens J, Krabbenborg S, de Boer J, Jonkheijm P (2012) A supramolecular system for the electrochemically controlled release of cells. Angew Chem Int Ed 51(49):12233–12237

    Google Scholar 

  124. Yeo W-S, Yousaf MN, Mrksich M (2003) Dynamic interfaces between cells and surfaces: electroactive substrates that sequentially release and attach cells. J Am Chem Soc 125:14994–14995

    Google Scholar 

  125. Lahann J, Mitragotri S, Tran TN, Kaido H, Sundaram J, Choi IS, Hoffer S, Somorjai GA, Langer R (2003) A reversibly switching surface. Science 299(5605):371–374

    Google Scholar 

  126. Ng CC, Magenau A, Ngalim SH, Ciampi S, Chockalingham M, Harper JB, Gaus K, Gooding JJ (2012) Using an electrical potential to reversibly switch surfaces between two states for dynamically controlling cell adhesion. Angew Chem Int Ed 51(31):7706–7710

    Google Scholar 

  127. Jaber JA, Schlenoff JB (2006) Mechanical properties of reversibly cross-linked ultrathin polyelectrolyte complexes. J Am Chem Soc 128:2940–2947

    Google Scholar 

  128. Sukhishvili SA (2002) Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly. Macromolecules 35:301–310

    Google Scholar 

  129. Jaber JA, Schlenoff JB (2005) polyelectrolyte multilayers with reversible thermal responsivity. Macromolecules 38:1300–1306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, B., Ye, Q. (2015). Antifouling Surfaces of Self-assembled Thin Layer. In: Zhou, F. (eds) Antifouling Surfaces and Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45204-2_2

Download citation

Publish with us

Policies and ethics