Skip to main content

Geodetic Constraints on the Geodynamic Evolution of the Red Sea

  • Chapter
  • First Online:
The Red Sea

Abstract

We use geodetic, plate tectonic, and geologic observations to quantitatively reconstruct the geologic evolution of the Red Sea and Gulf of Aden since separation of Arabia from Africa in the Late Oligocene. Rifting initiated at 22 ± 3 Ma roughly simultaneously along the full strike of the proto-Red Sea and Gulf of Aden. Rifting began along pre-existing zones of weakness associated with a Pan-African Precambrian collisional suture shortly after the Afro-Arabia Plate was weakened by impingement of the African hot spot (~30 Ma). The initial phase of continental rifting followed a roughly linear trend from the Gulf of Suez in the north, to the Bab-al-Mandab in the south where the Afar Triple Junction (junction of Red Sea, Gulf of Aden, and East African rifts) was located at that time. The initial rate of extension across the rift was roughly half the present-day rate. At 11 ± 2 Ma, the rate of rifting doubled to the present-day rate (24 ± 1 mm/year in the south [~12°N] and 7 ± 1 mm/year in the north [~27°N]) and the configuration of rifting changed in both the northern and southern Red Sea. This time corresponds to the initiation of ocean spreading (i.e., complete severing of the continental lithosphere and intrusion of rift basalts) along the full extent of the Gulf of Aden. The changes in the S Red Sea involved the propagation of the Afar Triple Junction westward to its present location (~11.5°N, 42°E), the transfer of rifting from the S Red Sea (Bab-al-Mandab) to the more N–S-oriented Danakil Depression, and accompanying CCW rotation of the Danakil Block with respect to Africa. In the northern Red Sea, rifting transferred from the Gulf of Suez to the more N–S-oriented Gulf of Aqaba/Dead Sea fault system. The rate of rifting has not changed significantly since that time (i.e., 11 ± 2 Ma). The initiation of rifting at 22 ± 3 Ma corresponds temporally with slowing of Africa–Eurasia convergence by a factor of ~2 and the changes at 11 ± 2 Ma with a second phase of slowing of Africa–Eurasia convergence, while Arabia–Eurasia convergence has remained roughly unchanged since >30 Ma. These observations are consistent with simple models where changes in Africa–Arabia–Eurasia relative plate motions are the fundamental cause of post-Oligocene Middle East and Mediterranean tectonics. Based on the simultaneity between full ocean spreading along the Gulf of Aden and a doubling of the extension rate across the Red Sea, and the change to more N–S-oriented rifting in both the northern and southern Red Sea, we hypothesize that slowing of Africa–Eurasia convergence resulted from a decrease in slab pull on the African Plate across the evolving AR-AF plate boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen M, Jackson J, Walker R (2004) Late cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics 23, TC2008. doi:10.1029/2003TC001530

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF 2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112:B09401. doi:10.1029/2007JB004949

    Google Scholar 

  • Al Taraza E, Rajab JA, Gomez F, Cochran W, Jaafar R, Ferry M (2011) GPS measurements of near-field deformation along the southern Dead Sea fault system. Geochem Geophys Geosyst 12. doi:10.1029/2011GC003736

  • Ambraseys NN, Jackson J (1998) Faulting associated with historical and recent earthquakes in the eastern Mediterranean region. Geophys J Int 133:390–406

    Article  Google Scholar 

  • ArRajehi A, McClusky S, Reilinger R, Daoud M, Alchalbi A, Ergintav S, Gomez F, Sholan J, et al (2010) Geodetic constraints on present-day motion of the Arabian plate: implications for Red Sea and Gulf of Aden rifting. Tectonics 29, TC3011. doi:10.1029/2009TC002482

  • Aujac G (2001) Eratosthène de Cyrène, le pionier de la geographie. Édition du CTHS, Paris 224 pp

    Google Scholar 

  • Barazangi M, Sandvol E, Seber D (2006) Structure and tectonic evolution of the Anatolian plateau in eastern Turkey. In: Dilek Y, Pavlides S (eds) Postcollisional tectonics and magmatism in the Mediterranean region and Asia. Geological Society of America Special Paper 409, pp 463–474, doi:10.1130/2006.2409(22)

  • Becker JJ, Sandwell DT, Smith WHF et al (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geodesy 32(4):355–371

    Article  Google Scholar 

  • Bellahsen N, Faccenna C, Funiciello F, Daniel JM, Jolivet L (2003) Why did Arabia separate from Africa? Insights from 3D laboratory experiments. Earth Planet Sci Lett 216:365–381

    Article  Google Scholar 

  • Bialas R, Buck WR, Qin R (2010) How much magma is required to rift a continent? Earth Planet Sci Lett 292:68–78

    Article  Google Scholar 

  • Blewitt G, Lavallee D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107(B7):2145. doi:10.1029/2001JB000570

    Article  Google Scholar 

  • Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden basins. J Afr Earth Sc 43:334–378

    Article  Google Scholar 

  • Byrne D, Sykes LR, Davis DM (1992) Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. J Geophys Res 97(B1):449–478

    Article  Google Scholar 

  • Chu D, Gordon G (1998) Current plate motions across the Red Sea. Geophys J Int 135:313–328

    Article  Google Scholar 

  • Cochran JR (1981) The Gulf of Aden: structure and evolution of a young ocean basin and continental margin. J Geophys Res 86:263–288

    Article  Google Scholar 

  • Conrad CP, Lithgow-Bertelloni C (2002) How mantle slabs drive plate tectonics. Science 298(5591):207–209

    Article  Google Scholar 

  • Cox A (1973) Plate tectonics and geomagnetic reversals. W. H. Freeman and Company, San Francisco, 702 pp ISBN 0-7167-0258-4

    Google Scholar 

  • d’Acremont E, Leroy S, Maia M, Gente P, Autin J (2010) Volcanism, jump and propagation on the Sheba ridge, eastern Gulf of Aden: segmentation evolution and implications for oceanic accretion processes. Geophys J Int 180:535–551

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus D (2010) Geologically current plate motions. Geophys J Int 181:1–80

    Article  Google Scholar 

  • Dercourt J, Zonenshain LP, Ricou L-E, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sbortshikov IM et al (1986) Geological evolution of the Tethys Belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 123:241–315

    Article  Google Scholar 

  • Ebinger C, Sleep N (1998) Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature 395:788–791

    Article  Google Scholar 

  • Ebinger C, Casey M (2001) Continental break-up in magmatic provinces: an Ethiopian example. Geology 29:527–530

    Article  Google Scholar 

  • Elsasser WM (1971) Sea-floor spreading as thermal convection. J Geophys Res 76(5):1101–1112

    Article  Google Scholar 

  • England PC, McKenzie DP (1983) A thin viscous sheet model for continental deformation. Geophys J Roy Astron Soc 73:523–532

    Article  Google Scholar 

  • Faccenna C, Becker TW, Jolivet L, Keskin M (2013) Mantle convection in the Middle East: reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth Planet Sci Lett 375:254–269

    Article  Google Scholar 

  • Farr TG et al (2007) The shuttle radar topography mission. Rev Geophys 45, RG2004. doi:10.1029/2005RG000183

  • Forsyth DW, Uyeda S (1975) On the relative importance of the driving forces of plate motion. Geophys J R Astron Soc 43:163–200

    Article  Google Scholar 

  • Forte AM, Cowgill E, Bernardin T, Kreylos O, Hamann B (2012) Late Cenozoic deformation of the Kura fold-thrust belt, southern Greater Caucasus. Geol Soc Am Bull 122:465–486

    Article  Google Scholar 

  • Fournier M, Camot-Rooke N, Petit C, Fabri O, Huchon P, Maillot B, Lepvrier C (2008) In situ evidence for dextral active motion at the Arabia-India plate boundary. Nat Geosci 1:54–58

    Article  Google Scholar 

  • Garfunkel Z, Beyth M (2006) Constraints on the structural development of Afar imposed by the kinematics of the major surrounding plates. Geol Soc London, Spec Publ 259. doi:10.1144/GSL.SP.2006.259.01.04

  • Gomez F, Karam G, Khawlie M, McClusky S, Vernant P, Reilinger R, Jaafar R, Tabet C, Khair K, Barazangi M (2007) Global positioning system measurements of strain accumulation and slip transfer through the restraining bend along the Dead Sea fault system in Lebanon. Geophys J Int 168:1021–1028

    Article  Google Scholar 

  • Gordon RG, Argus DF, Royer J-Y (2008) Space geodetic test of kinematic models for the Indo-Australian composite plate. Geology 36:827–830

    Article  Google Scholar 

  • Hager BH, O’Connell RJ (1981) A simple global model of plate dynamics and mantle convection. J Geophys Res 86(B6):4843–4867

    Article  Google Scholar 

  • Hager BH, King RW, Murray MH (1991) Measurements of crustal deformation using the global positioning system. Annu Rev Earth Planet Sci 19:351–382

    Article  Google Scholar 

  • Hempton MR (1987) Constraints on Arabia plate motion and extensional history of the Red Sea. Tectonics 6:687–705

    Article  Google Scholar 

  • Herring TA, King RW, McClusky SC (2013) Introduction to GAMIT/GLOBK, Release 10.5. MIT, Cambridge 48 pp

    Google Scholar 

  • Hetland EA, Muse P, Simons M, Lin YN, Agram PS, DiCaprio CJ (2012) Multiscale InSAR time series (MInTS) analysis of surface deformation. J Geophys Res 117:B02404. doi:10.1029/2011JB008731

    Google Scholar 

  • Joffe S, Garfunkel Z (1987) Plate kinematics of the circum Red Sea: a re-evaluation. Tectonophysics 141:5–12

    Article  Google Scholar 

  • Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa-Eurasia collision. Tectonics 19:1095–1106

    Article  Google Scholar 

  • King DA (1993) Astronomy in the service of Islam. Variorum, Aldershot, UK

    Google Scholar 

  • King RW, Masters EG, Rizos C, Stolz A, Collins J (1985) Surveying with GPS, monograph 9. School of Surveying, The University of New South Wales, Kensington 128 pp

    Google Scholar 

  • Klinger Y, Avouac JP, Abou Karaki N, Dorbath L, Bourles D, Reyss JL (2000) Slip rate of the Dead Sea transform fault in the northern Araba valley (Jordan). Geophys J Int 142:755–768

    Article  Google Scholar 

  • Kozacı Ö, Dolan JF, Finkel RC (2009) A late Holocene slip rate for the central North Anatolian fault at Tahtaköprü, Turkey, from cosmogenic 10Be geochronology: implications for fault loading and strain release rates. J Geophys Res 114:B01405. doi:10.1029/2008JB005760

    Google Scholar 

  • Le Beon M, Klinger Y, Amrat AQ, Agnon A, Dorbath L, Baer G, Ruegg J-C, Charade O, Mayyas JO (2008) Slip rate and locking depth from GPS profiles across the southern Dead Sea Transform. J Geophys Res 113:B11403. doi:10.11029/2007JB005280

    Article  Google Scholar 

  • Le Pichon X, Gaulier JM (1988) The rotation of Arabia and the levant fault system. Tectonophysics 153:271–294

    Article  Google Scholar 

  • Le Pichon X, Kreemer C (2010) The Miocene to present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annu Rev Earth Planet Sci 38:323–351. doi:10.1146/annurev-earth-040809-152419

    Article  Google Scholar 

  • Long MD, Becker TW (2010) Mantle dynamics and seismic anisotropy. Earth Planet Sci Lett 297:341–354. doi:10.1016/j.epsl.2010.06.036

    Article  Google Scholar 

  • Mahmoud S, Reilinger R, McClusky S, Vernant P, Tealeb A (2005) GPS evidence for northward motion of the Sinai block: implications for E. Mediterranean tectonics. Earth Planet Sci Lett 238:217–227

    Article  Google Scholar 

  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M (2000) GPS constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719

    Article  Google Scholar 

  • McClusky S, Reilinger R, Mahmoud S, Ben Sari D, Tealeb A (2003) GPS constraints on Africa (Nubia) and Arabia plate motion. Geophys J Int 155:126–138

    Article  Google Scholar 

  • McClusky S, Reilinger R, Ogubazghi G, Amleson A, Haleab B, Vernant P, Sholan J, (2010) Kinematics of the southern Red Sea–afar triple junction and implications for plate dynamics. Geophys Res Lett 37. doi:10.1029/2009GL041127

  • McKenzie DP, Davies D, Molnar P (1970) Plate tectonics of the Red Sea and East Africa. Nature 226:243–248

    Article  Google Scholar 

  • McQuarrie N, Stock JM, Verdel C, Wernicke BP (2003) Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophysi Res Lett 30. doi:10.1029/2003GL017992

  • McQuarrie N, van Hinsbergen DJJ (2013) Retrodeforming the Arabia-Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41:315–318

    Article  Google Scholar 

  • Misra P, Enge P (2011) Global positioning system: signals, measurements, and performance. Ganga-Jamuna Press, Lincoln. ISBN 0-909544-1-7

    Google Scholar 

  • Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43

    Article  Google Scholar 

  • Mouthereau F, Lacombe O, Vergés J (2012) Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532–535:27–60

    Article  Google Scholar 

  • National Research Council (U.S.) (1995) Committee on the future of the global positioning system. National Academy of Public Administration, Washington DC

    Google Scholar 

  • Niemi TM, Zhang H, Atallah M, Harrison JBJ (2001) Late pleistocene and holocene slip rate of the Northern Wadi Araba fault, Dead Sea transform, Jordan. J Seismol 5:449–474

    Article  Google Scholar 

  • Okay AI, Zattin M, Cavazza W (2010) Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 38:35–38

    Article  Google Scholar 

  • Omar GI, Steckler MS (1995) Fission track evidence on the initial rifting of the Red Sea: two pulses, no propagation. Science 270:1341–1344

    Article  Google Scholar 

  • Pail R, Goiginger H, Schuh W, Höck E, Brockmann J, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:5–10

    Article  Google Scholar 

  • Pallister JS, McCausland WA, Jónsson S, Lu Z, Zahran H, El-Hadidy S, Aburukbah A, Stewart ICF, Lundgren PR, White RA, Moufti MRH (2010) Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia. Nat Geosci 3:705–712

    Article  Google Scholar 

  • Parsons B, Richter FM (1980) A relation between the driving force and geoid anomaly associated with mid-ocean ridges. Earth Planet Sci Lett 51:445–450

    Article  Google Scholar 

  • Pérouse E, Chamot-Rooke N, Rabaute A, Briole P, Jouanne F, Georgiev I, Dimitrov D (2012) Bridging onshore and offshore present-day kinematics of central and eastern Mediterranean: Implications for crustal dynamics and mantle flow. Geochem Geophys Geosyst 13. doi:10.1029/2012GC004289

  • Rawlinson N, Pozgay S, Fishwick S (2010) Seismic tomography: a window into deep earth. Phys Earth Planet Inter 178:101–135

    Article  Google Scholar 

  • Redfield TF, Wheeler WH, Often M (2003) A kinematic model for the development of the Afar depression and its paleogeographic implications. Earth Planet Sci Lett 216:383–398

    Article  Google Scholar 

  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:BO5411. doi:10.1029/2005JB004051

    Article  Google Scholar 

  • Reilinger R, McClusky S (2011) Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys J Int 186:971–979

    Article  Google Scholar 

  • Royden L (1993) The tectonic expression of slab pull at continental convergent boundaries. Tectonics 12:303–325

    Article  Google Scholar 

  • Ryder I, Burgmann R (2008) Spatial variations in slip deficit on the central San Andreas fault from InSAR. Geophys J Int 175(3):837–852

    Article  Google Scholar 

  • Sadeh M, Hamiel Y, Ziv A, Bock Y, Fang P, Wdowinski S (2012) Crustal deformation along the Dead Sea transform and the Carmel Fault inferred from 12 years of GPS measurements. J Geophys Res 117. doi:10.1029/2012JB009241

  • Saria E, Calais E, Altamimi Z, Willis P, Farah H (2013) A new velocity field for Africa from combined GPS and DORIS space geodetic Solutions: Contribution to the definition of the African reference frame (AFREF). JGeophys Res 118. doi:10.1002/jgrb.50137

  • Sengor AMC, Gorur N, Saroglu F (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N (eds) Strike-slip deformation, basin formation, and sedimentation, Special Publication Society of Economic Paleontologists and Mineralogists, vol 37, pp 227–264

    Google Scholar 

  • Spence W (1987) Slab pull and the seismotectonics of subducting lithosphere. Rev Geophys 25. doi:10.1029/RG025i001p00055

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505

    Article  Google Scholar 

  • Tesfaye S, Kusky TT, Harding D (2003) Early continental breakup boundary and migration of the Afar triple junction, Ethiopia. Geol Soc Am Bull 115:1053–1067

    Article  Google Scholar 

  • Thatcher W (1993) The earthquake cycle and its role in the long-term deformation of the continental lithosphere. Ann Geofis 36:13–24

    Google Scholar 

  • Thatcher W (2003) GPS constraints on the kinematics of continental deformation. Inter Geol Rev 45:191–212

    Article  Google Scholar 

  • Tiryakioglu I, Floyd M, Erdogan S, Gulal E, Ergintav S, McClusky S, Reilinger R (2013) GPS constraints on active deformation in the Isparta Angle region of SW Turkey. Geophys J Int 195:1455–1463

    Article  Google Scholar 

  • Tompkins P (1997) Secrets of the Great Pyramid: two thousand years of adventure and discoveries surrounding the great pyramid of cheops. BBS Publishers, New York 432 pp

    Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vernant P, Nilforoushan F, Hatzfeld D, Abbassi M, Vigny C, Masson F, Nankali H, Martinod J, Ashtiani A, Bayer R, Tavakoli F, Chéry J (2004) Contemporary crustal deformation and plate kinematics in Middle East constrained by GPS measurements in Iran and northern Oman. Geophys J Int 157:381–398

    Article  Google Scholar 

  • Walters RJ, Holley RJ, Parsons B, Wright T (2011) Interseismic strain accumulation across the North Anatolian Fault from Envisat InSAR measurements. Geophys Res Lett 38. doi:10.1029/2010GL046443

  • Wang K, Hu Y, He J (2012) Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature 484. doi:10.1038/nature11032

  • Wolfenden E, Ebinger C, Yirgub G, Deino A, Ayalew D (2004) Evolution of the northern Main Ethiopian rift: birth of a triple junction. Earth Planet Sci Lett 224:213–228

    Article  Google Scholar 

  • Yeats RS, Sieh KE, Allen CR (1996) Geology of earthquakes. Oxford University Press, UK, 576 pp, ISBN 13: 9780195078275

    Google Scholar 

Download references

Acknowledgments

We thank those individuals and organizations that established and maintain the global GPS tracking network. We are grateful to UNAVCO for assistance with the installation of the CGPS stations in Halyat Amar and Namas, KSA, and for logistical support for GPS survey observations. The chapter benefited substantially from careful and constructive reviews by Charles DeMets, Rebecca Bendick, and Nicolas Bellahsen. This research was supported in part by KACST and NSF grants EAR-0337497, EAR-0305480, EAR-0635702, and EAR-0947969 to MIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Reilinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reilinger, R., McClusky, S., ArRajehi, A. (2015). Geodetic Constraints on the Geodynamic Evolution of the Red Sea. In: Rasul, N., Stewart, I. (eds) The Red Sea. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45201-1_7

Download citation

Publish with us

Policies and ethics