Skip to main content

Seafloor Spreading Initiation: Geophysical and Geochemical Constraints from the Thetis and Nereus Deeps, Central Red Sea

  • Chapter
  • First Online:
The Red Sea

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

The rifting apart of continents involves interaction of tectonic and magmatic events that reflect the strain-rate and temperature-dependent processes of solid state deformation and decompression melting within the Earth. The spatial and temporal scales over which these mechanisms localize extensional strain, allowing continental rifts to evolve towards seafloor spreading, remain controversial. Here we show the role played by magmatism during the transition from a continental to an oceanic rift based on geophysical and geochemical data from the Thetis and Nereus Deeps, the two northernmost oceanic cells in the central Red Sea. The Thetis segment is made by coalescence of three sub-cells that become shallower, narrower and younger from south to north. Magnetic data reveal that the initial emplacement of oceanic crust is occurring today in the Thetis northern basin and in the southern tip of Nereus. The intertrough zones that separate the Thetis “oceanic” cell from the Nereus cell to the north, and the Hadarba cell to the south, contain thick sedimentary sequences and relicts of continental crust. A seismic reflection profile running across the central part of the southern Thetis basin shows a ~5 km wide reflector about 3.2 km below the axial neovolcanic zone, interpreted as marking the roof of a magma chamber or melt lens and as a last step in a sequence of basaltic melt intrusion from pre-oceanic continental rifting to oceanic spreading. The spatial evolution of mantle melting processes across Thetis and Nereus is evaluated from the chemical composition of 22 basaltic glasses sampled along 100 km of the rift axis. Trace and major element compositions corrected for crystallization show relationships with age of initial emplacement of the oceanic crust and preserve a clear signal of mantle melting depth variations. While Zr/Y and (Sm/Yb)n decrease, Na*/Ti* increases slightly from south to north. Na8 correlates positively with Fe8, and Zr/Y and (Sm/Yb)n with both Fe8 and Na8. This indicates that an increase in the degree of melting corresponds to a decrease in the mean pressure of melting, suggesting active mantle upwelling beneath Thetis and Nereus. The inferred sharp rift-to-drift transition marked by magmatic activity with typical MORB signature and a relatively high degree of mantle melting, with no contamination by continental lithosphere, suggests that lower crust and mantle lithosphere had already been replaced by active upwelling asthenosphere before separation of the Nubian and Arabian plates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altherr R, Henjes-Kunst F, Puchelt H, Baumann A (1990) Volcanic activity in the Red Sea axial trough: evidence for a large mantle diapir. Tectonophysics 150:121–133

    Google Scholar 

  • AlMalki KA, Betts PG, Ailleres L (2014) Episodic sea-floor spreading in the Southern Red Sea. Tectonophysics 617:140–149

    Google Scholar 

  • Alvarez W (2010) Protracted continental collisions argue for continental plates driven by basal traction. Earth Planet Sci Lett 296:434–442

    Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: Meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Google Scholar 

  • Antonini P, Petrini R, Contin G (1998) A segment of sea-floor spreading in the central Red Sea: basalts from the nereus deep (23° 00′–23° 20′ N). J Afr Earth Sci 27:107–114

    Google Scholar 

  • Armitage JJ, Henstock TJ, Minshull TA, Hopper JR (2009) Lithospheric controls on melt production during continental breakup at slow rates of extension: application to the North Atlantic. Geochem Geophys Geosyst 10:Q06018. doi:10.1029/2009GC002404

    Google Scholar 

  • ArRajehi A, McClusky S, Reilinger R, Daoud M, Alchalbi A, Ergintav S, Gomez F, Sholan J, Bou-Rabee F, Ogubazghi G, Haileab B, Fisseha S, Asfaw L, Mahmoud S, Rayan A, Bendik R, Kogan L (2010) Geodetic constraints on present-day motion of the Arabian plate: implications for Red Sea and Gulf of Aden rifting. Tectonics 29:TC3011. doi:10.1029/2009TC002482

  • Augustin N, Devey CW, van der Zwan FM, Feldens P, Tominaga M, Bantan RA, Kwasnitschka T (2014) The rifting to spreading transition in the Red Sea. Earth Planet Sci Lett 395:217–230

    Google Scholar 

  • Bäcker H, Schoell M (1972) New deeps with brines and metalliferous sediments in the Red Sea. Nature 240:153–158

    Google Scholar 

  • Barberi F, Varet J (1977) Volcanism of Afar—small scale plate tectonics implications. Geol Soc Am Bull 88:1251–1266

    Google Scholar 

  • Bastow ID, Keir D (2011) The protracted development of the continent-ocean transition in Afar. Nat Geosci 4:248–250

    Google Scholar 

  • Beutel E, van Wijk J, Ebinger C, Keir D, Agostini A (2010) Formation and stability of magmatic segments in the main Ethiopian and Afar rifts. Earth Planet Sci Lett 293:225–235

    Google Scholar 

  • Boillot G, Grimaud S, Mauffret A, Mougenot D, Kornprobst J, Mergoil-Daniel J, Torrent G (1980) Ocean–continent boundary off the Iberian margin: a serpentinite diapir west of the Galicia bank. Earth Planet Sci Lett 48:23–34

    Google Scholar 

  • Bonatti E (1985) Punctiform initiation of seafloor spreading in the Red Sea during transition from continental to an oceanic rift. Nature 316:33–37

    Google Scholar 

  • Bonatti E, Clocchiatti R, Colantoni P, Gelmini R, Marinelli G, Ottonello G, Santacroce R, Taviani M, Abdel-Meguid AA, Assaf HS, El Tahir MA (1983) Zabargad (St. John) Island: an uplifted fragment of Sub-Red Sea lithosphere. J Geol Soc London 14D:667–690

    Google Scholar 

  • Bonatti E, Colantoni P, Della Vedova B, Taviani M (1984) Geology of the Red Sea transitional region (22°–25°N). Oceanol Acta 7:385–398

    Google Scholar 

  • Bonatti E, Hamlyn P, Ottonello G (1981) Upper mantle beneath a young oceanic rift—peridotites from the island of Zabargad (Red-Sea). Geology 9:474–479

    Google Scholar 

  • Bonatti E, Ottonello G, Hamlyn PR (1986) Peridotites from the island of Zabargad (Red Sea). J Geophys Res 91:599–631

    Google Scholar 

  • Bonatti E, Seyler M (1987) Crustal underplating and evolution in the Red Sea rift. J Geophys Res 92:12083–12821

    Google Scholar 

  • Bosworth W (1989) Basin and range style tectonics in East Africa. J Afr Earth Sc 8(2–4):191–201

    Google Scholar 

  • Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden basins. J Afr Earth Sci 43:334–378

    Google Scholar 

  • Boutilier RR, Keen CE (1999) Small scale convection and divergent plate boundaries. J Geophys Res 104:7389–7403

    Google Scholar 

  • Bown JW, White RS (1994) Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet Sci Lett 121:435–449

    Google Scholar 

  • Buck WR (1986) Small-scale convection induced by passive rifting: the cause for uplift of rift shoulders. Earth Planet Sci Lett 77:362–372

    Google Scholar 

  • Buck WR, Su W (1989) Focused mantle upwelling below mid-ocean ridges due to feedback between viscosity and melting. Geophys Res Lett 16(7):641–644

    Google Scholar 

  • Calvert AJ (1995) Seismic evidence for a magma chamber beneath the slow-spreading Mid-Atlantic Ridge. Nature 377:410–413

    Google Scholar 

  • Caratori Tontini F, Cocchi L, Carmisciano C (2009) Rapid 3-D forward model of potential fields with application to Palinuro Seamount magnetic anomaly (southern Tyrrhenian Sea, Italy). J Geophys Res 114:B02103. doi:10.1029/2008JB005907

    Google Scholar 

  • Chang SJ, Merino M, Van der Lee S, Stein S, Stein CA (2011) Mantle flow beneath Arabia offset from the opening Red Sea. Geophys Res Lett 38:L04301. doi:10.1029/2010GL045852

    Google Scholar 

  • Chen YJ (1992) Oceanic crustal thickness versus spreading rate. Geophys Res Lett 19:753–756

    Google Scholar 

  • Choblet G, Parmentier EM (2001) Mantle upwelling and melting beneath slow spreading centers: effects of variable rheology and melt productivity. Earth Planet Sci Lett 184:589–604

    Google Scholar 

  • Chu D, Gordon RG (1998) Current plate motions across the Red Sea. Geophys J Int 135:313–328

    Google Scholar 

  • Cochran JR (1981) The Gulf of Aden: structure and evolution of a young ocean basin and continental margin. J Geophys Res 86:263–287

    Google Scholar 

  • Cochran JR (2005) Northern Red Sea: nucleation of an oceanic spreading center within a continental rift. Geochem Geophys Geosyst 6:Q03006. doi:10.1029/2004GC000826

    Google Scholar 

  • Cochran J, Gaulier J-M, LePichon X (1991) Crustal structure and the mechanism of extension in the Northern Red Sea: constraints from gravity anomalies. Tectonics 10:1018–1037

    Google Scholar 

  • Cochran JR, Karner GD (2007) Constraints on the deformation and rupturing of continental lithosphere of the Red Sea: the transition from rifting to drifting. In: Karner GD, Manatschal G, Pinheiro LM (eds) Imaging, mapping and modeling continental lithosphere extension and breakup, Special Publication 282. Geological Society of London, London, pp 265–289

    Google Scholar 

  • Coleman RG, McGuire AV (1988) Magma systems related to the Red Sea opening. Tectonophysics 150:77–100

    Google Scholar 

  • Collier J, Sinha M (1990) Seismic images of a magma chamber beneath the Lau Basin back-arc spreading centre. Nature 346:646–648

    Google Scholar 

  • Corti G, Van Wijk J, Bonini M, Sokoutis D, Cloethingh S, Innocenti F, Manetti P (2003) Transition from continental break-up to punctiform seafloor spreading: how fast, symmetric and magmatic. Geophys Res Lett 30:6–9

    Google Scholar 

  • Courtillot V (1982) Propagating rifts and continental breakup. Tectonics 1:239–250

    Google Scholar 

  • Crossley R, Watkins C, Raven M, Cripps D, Carnell A, Williams D (1992) The sedimentary evolution of the Red Sea and Gulf of Aden. J Pet Geol 15:157–172

    Google Scholar 

  • D’Acremont E, Leroy S, Maia M, Patriat P, Berslier MO, Bellahsen N, Fournier M, Gente P (2006) Structure and evolution of the eastern Gulf of Aden: insights from magnetic and gravity data. Geophys J Int 165:786–803

    Google Scholar 

  • Daniels KA, Bastow ID, Keir D, Sparks RSJ, Menard T (2014) Thermal models of dyke intrusion during the development of continent-ocean transition. Earth Planet Sci Lett 285:145–153

    Google Scholar 

  • Davison I, Al-Kadasi M, Al-Kihrbash A, Baker J, Blakey S, Bosence D, Dart C, Heaton R, McClay K, Menzies M, Nichols G, Owen L, Yelland A (1994) Geological evolution of the southeastern Red Sea margin, Republic of Yemen. Geol Soc Am Bull 106:1474–1493

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194

    Google Scholar 

  • Detrick RS, Buhl P, Vera E, Mutter J, Orcutt J, Madsen J, Brocher T (1987) Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 326:35–41

    Google Scholar 

  • Dixon TH, Stern RJ, Hussein IM (1987) Control of Red Sea rift geometry by pre-Cambrian structure. Tectonics 6:551–571

    Google Scholar 

  • Drake CL, Girdler RW (1964) A geophysical study of the Red Sea. Geophys J Roy Astron Soc 8:473–495

    Google Scholar 

  • Ebinger C, Ayele A, Keir D, Rowland J, Yirgu G, Wright T, Belachew M, Hamling I (2010) Length and timescales of rift faulting and magma intrusion: the Afar rifting cycle from 2005 to present. Annu Rev Earth Planet Sci 38:439–466

    Google Scholar 

  • Ebinger CJ, Sleep NH (1998) Cenozoic magmatism throughout East Africa resulting from impact of a single plume. Nature 395:788–791

    Google Scholar 

  • Eldholm O, Grue K (1994) North Atlantic volcanic margins: dimensions and production rates. J Geophys Res 99:2955–2968

    Google Scholar 

  • Ellam RM (1992) Lithospheric thickness as a control on basalt geochemistry. Geology 20:153–156

    Google Scholar 

  • Ferguson DJ, Maclennan J, Bastow ID, Pyle DM, Jones SM, Keir D, Blundy JD, Plank T, Yirgu G (2013) Melting during late-stage rifting in Afar is hot and deep. Nature 499:70–73

    Google Scholar 

  • Fournier M, Chamot-Rooke N, Petit C, Huchon P, Al-Kathiri A, Audin L, Beslier M-O, d’Acremont E, Fabbri O, Fleury J-M, Khanbari K, Lepvrier C, Leroy S, Maillot B, Merkouriev S (2010) Arabia-Somalia plate kinematics, evolution of the Aden-Owen-Carlsberg triple junction, and opening of the Gulf of Aden. J Geophys Res 115:B04102. doi:10.1029/2008JB006257

    Google Scholar 

  • Fram MS, Lesher CE, Volpe AM (1998) Mantle melting systematics: transition from continental to oceanic volcanism on the southeast greenland margin. Proc ODP Sci Results 152:373–386

    Google Scholar 

  • Ghebreab W (1998) Tectonics of the Red Sea region reassessed. Earth-Sci Rev 45:1–44

    Google Scholar 

  • Girdler RW (1985) Problems concerning the evolution of oceanic lithosphere in the Northern Red Sea. Tectonophysics 116:109–122

    Google Scholar 

  • Girdler RW, Styles P (1974) Two stage seafloor spreading. Nature 247:7–11

    Google Scholar 

  • Guennoc P, Pautot G, Coutelle A (1988) Surficial structures of the northern Red Sea axial vally from 23°N to 28°N: time and space evolution of neo-oceanic structures. Tectonophysics 153:1–23

    Google Scholar 

  • Guennoc P, Pautot G, Leqentrec MF, Coutelle A (1990) Structure of an early oceanic rift in the northern Red-Sea. Oceanol Acta 13:145–157

    Google Scholar 

  • Hall SA (1989) Magnetic evidence for the nature of the crust beneath the Southern Red Sea. J Geophys Res 94:12267–12279

    Google Scholar 

  • Hofmann C, Courtillot V, Feraud G, Rochette P, Yirgu G, Ketefo E, Pik R (1997) Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 389:838–841

    Google Scholar 

  • Höink T, Jellinek AM, Lenardic A (2011) Viscous coupling at the lithosphere-asthenosphere boundary. Geochem Geophys Geosyst 12:Q0AK02. doi:10.1029/2011GC003698

  • Hopper JR, Buck WR (1998) Styles of extensional decoupling. Geology 26:699–702

    Google Scholar 

  • Huismans R, Beaumont C (2011) Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature 473(7345):74–78

    Google Scholar 

  • Izzeldin AY (1982) On the structure and evolution of the Red Sea. PhD thesis, IPG, Strasbourg, France, 164 pp

    Google Scholar 

  • Izzeldin AY (1987) Seismic, gravity and magnetic surveys in the central part of the Red Sea: their interpretation and implications for the structure and evolution of the Red Sea. Tectonophysics 143:269–306

    Google Scholar 

  • Izzeldin AY (1989) Transverse structures in the central part of the Red Sea and implications on early stages of oceanic accretion. Geophys J Int 96:117–129

    Google Scholar 

  • Jagoutz O, Müntener O, Manatschal G, Rubatto D, Peron-Pinvidic G, Turrin BD, Villa IM (2007) The rift-to-drift transition in the North Atlantic: a stuttering start of the MORB machine? Geology 35:1087–1090

    Google Scholar 

  • Keen CE, Boutilier RR (1995) Lithosphere-asthenosphere interactions below rifts. In: Banda E, Torne M, Talwani M (eds) Rifted ocean-continent boundaries. Kluwer Academic, Norwell, pp 17–30

    Google Scholar 

  • Keir D, Belachew M, Ebinger CJ, Kendall J, Hammond JOS, Stuart GW, Ayele A (2011) Mapping the evolving strain field in the Afar triple junction using crustal anisotropy. Nat Commun 2(285). doi:10.1038/ncomms1287

  • Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res 92:8089–8115

    Google Scholar 

  • Kroner A, Stern RJ, Dawoud AS, Compston W, Reischmann T (1987) The Pan-African continental-margin in northeastern Africa—evidence from a geochronological study of granulites at Sabaloka, Sudan. Earth Planet Sci Lett 85:91–104

    Google Scholar 

  • Kuznir NJ, Karner GD (2007) Continental lithospheric thinning and breakup in response to upwelling divergent mantle flow: application to the woodlark, newfoundland and Iberia margin. In: Karner GD, Manatschal G, Pinheiro LM (eds) Imaging, mapping and modelling continental lithosphere extension and breakup, Special Publication 282. Geological Society of London, London, pp 389–419

    Google Scholar 

  • Langmuir CH, Klein EM, Plank T (1992) Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. In: Morgan JP, Blackman DK, Sinton JK (eds) Mantle flow and melt generation at Mid-Ocean ridges. geophysical monograph 71. American Geophysical Union, Washington DC, pp 183–280

    Google Scholar 

  • Le Roux V, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches AJV (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259:599–612

    Google Scholar 

  • Ligi M, Bortoluzzi G (1989) PLOTMAP: geophysical and geological applications of good standard quality cartographic software. Comput Geosci 15:519–585

    Google Scholar 

  • Ligi M, Cuffaro M, Chierici F, Calafato A (2008) Three-dimensional passive mantle flow beneath mid-ocean ridges: an analytical approach. Geophys J Int 175:783–805

    Google Scholar 

  • Ligi M, Bonatti E, Caratori Tontini F, Cipriani A, Cocchi L, Schettino A, Bortoluzzi G, Ferrante V, Khalil SM, Mitchell NC, Rasul N (2011) Initial burst of oceanic crust accretion in the Red Sea due to edge-driven mantle convection. Geology 39:1019–1022. doi:10.1130/G32243.1

    Google Scholar 

  • Ligi M, Bonatti E, Bortoluzzi G, Cipriani A, Cocchi L, Caratori Tontini F, Carminati E, Ottolini L, Schettino A (2012) Birth of an ocean in the Red Sea: initial pangs. Geochem Geophys Geosyst 13:Q08009. doi:10.1029/2012GC004155

    Google Scholar 

  • Lizarralde D, Axen GJ, Brown HE, Fletcher JM, González-Fernández A, Harding AJ, Holbrook WS, Kent GM, Paramo P, Sutherland F, Umhoefer PJ (2007) Variation in styles of rifting in the Gulf of California. Nature 448:466–469

    Google Scholar 

  • Makris MJ, Rhim R (1991) Shear controlled evolution of the Red Sea: pull-apart model. Tectonophysics 198:441–466

    Google Scholar 

  • Manatschal G, Froitzheim N, Rubenach M, Turrin BD (2001) The role of detachment faulting in the formation of an ocean-continent transition: insights from the Iberia Abyssal Plain. In: Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (eds) Non-Volcanic rifting of continental margins: a comparison of evidence from land and sea, Special Publication 187. Geological Society of London, London, pp 405–428

    Google Scholar 

  • McClusky S, Reilinger R, Mahmoud S, Ben Sari D, Tealeb A (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys J Int 155:126–138

    Google Scholar 

  • Mitchell NC, Ligi M, Ferrante V, Bonatti E, Rutter E (2010) Submarine salt flows in the central Red Sea. Geol Soc Am Bull 122:701–713

    Google Scholar 

  • Mitchell NC, Park Y (2014) Nature of crust in the central Red Sea. Tectonophysics 628:123–139. http://dx.doi.org/10.1016/j.tecto.2014.04.029

  • Mohriak WU, Leroy S (2013) Architecture of rifted continental margins and break-up evolution: insights from the South Atlantic, North Atlantic and Red Sea-Gulf of Aden conjugate margins. In: Mohriak WU, Danforth A, Post PJ, Brown DE, Tari GC, Nemcok M, Sinha ST (eds) Conjugate divergent margins, Special Publication 369. Geological Society of London, London, pp 497–535. doi:10.1144/SP369.17

  • Morgan PJ, Chen YJ (1993) Dependence of ridge-axis morphology on magma supply and spreading rate. Nature 364:706–708

    Google Scholar 

  • Müntener O, Manatschal G, Desmurs L, Pettke T (2010) Plagioclase peridotites in ocean–continent transitions: refertilized mantle domains generated by melt stagnation in the shallow mantle lithosphere. J Petrol 51:255–294. doi:10.1093/petrology/egp087

    Google Scholar 

  • Müntener O, Pettke T, Desmurs L, Meier M, Schaltegger U (2004) Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd-isotope evidence and implications for crust-mantle relationships. Earth Planet Sci Lett 221:293–308

    Google Scholar 

  • Nicolas A, Boudier F, Montigny R (1987) Structure of Zabargad Island and early rifting of the Red sea. J Geophys Res 92:461–474

    Google Scholar 

  • Nielsen TK, Hopper JR (2004) From rift to drift: mantle melting during continental breakup. Geochem Geophys Geosyst 5:Q07003. doi:10.1029/2003GC000662

    Google Scholar 

  • Pautot G (1983) Red Sea deeps—a geomorphological study by Seabeam. Oceanol Acta 6:235–244

    Google Scholar 

  • Péron-Pinvidic G, Manatschal G, Osmundsen PT (2013) Structural comparison of archetypal Atlantic rifted margins: a review of observations and concepts. Mar Pet Geol 43:21–47

    Google Scholar 

  • Phillips JD, Ross DA (1970) Continuous seismic reflection profiles in the Red Sea. Philos Trans R Soc Lond 267:143–152

    Google Scholar 

  • Plank T, Langmuir CH (1992) Effects of the melting regime on the composition of oceanic crust. J Geophys Res 97:19749–19770

    Google Scholar 

  • Purdy GM, Kong LSL, Christeson GL, Solomon SC (1992) Relationship between spreading rate and the seismic structure of mid-ocean ridges. Nature 355:815–817

    Google Scholar 

  • Ravat D, Salem A, Abdelaziz AMS, Elawadi E, Morgan P (2011) Probing magnetic bottom and crustal temperature variations along the Red Sea margin of Egypt. Tectonophysics 510:337–344

    Google Scholar 

  • Reston TJ, Morgan JP (2004) Continental geotherm and the evolution of rifted margins. Geology 32:133–136

    Google Scholar 

  • Ross DA, Schlee J (1973) Shallow structure and geologic development of the southern Red Sea. Geol Soc Am Bull 84:3287–3848

    Google Scholar 

  • Roeser HA (1975) A detailed magnetic survey of the southern Red Sea. Geol Jahr D13:131–153

    Google Scholar 

  • Rowan MG (2014) Passive-margin salt basins: hyperextension, evaporite deposition, and salt tectonics. Basin Res 26:154–182

    Google Scholar 

  • Rouchy JM, Noel D, Wali AMA, Aref MAM (1995) Evaporitic and biosiliceous cyclic sedimentation in the miocene of the Gulf of Suez—depositional and diagenetic aspects. Sed Geol 94:277–297

    Google Scholar 

  • Rychert CA, Hammond JOS, Harmon N, Kendall JM, Keir D, Ebinger C, Bastow ID, Ayele A, Belachew M, Stuart G (2012) Volcanism in the Afar Rift sustained by decompression melting with minimal plume influence. Nat Geosci 5:406–409. doi:10.1038/ngeo1455

    Google Scholar 

  • Saleh S, Jahr T, Jentzsch G, Saleh A, Ashour NMA (2006) Crustal evaluation of the northern Red Sea rift and Gulf of Suez, Egypt from geophysical data: 3-dimensional modeling. J Afr Earth Sc 45:257–278

    Google Scholar 

  • Scott DR, Stevenson DJ (1989) A self-consistent model of melting, magma migration and buoyancy-driven circulation beneath mid-ocean ridges. J Geophys Res 94:2973–2988

    Google Scholar 

  • Searle RC, Ross DA (1975) A geophysical study of the Red Sea axial trough between 20.5° and 22°N. Geophys J Roy Astron Soc 43:555–572

    Google Scholar 

  • Schmeling H (2010) Dynamic models of continental rifting with melt generation. Tectonophysics 480:33–47

    Google Scholar 

  • Singh SC, Crawford WC, Carton H, Seher T, Combier V, Cannat M, Canales JP, Dusunur D, Escartin J, Miranda JM (2006a) Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field. Nature 442:1029–1032

    Google Scholar 

  • Singh SC, Harding AJ, Kent GM, Sinha MC, Combier V, Bazil S, Tong CH, Pye JW, Barton PJ, Hobbs RW, White RS, Orcutt JA (2006b) Seismic reflection images of Moho underlying melt sills at the East Pacific Rise. Nature 442:287–290

    Google Scholar 

  • Sotin CJ, Parmentier EM (1989) Dynamical consequences of compositional and thermal density stratification beneath spreading centers. Geophys Res Lett 16:835–838

    Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annu Rev Earth Planet Sci 22:319–351

    Google Scholar 

  • Stern RJ, Johnson PR (2010) Continental lithosphere of the Arabian plate: a geologic, petrologic, and geophysical synthesis. Earth-Sci Rev 101:29–67

    Google Scholar 

  • Storey BC (1995) The role of mantle plumes in continental break-up: case-histories from Gondwanaland. Nature 377:301–308

    Google Scholar 

  • Sultan M, Becker R, Arvidson RE, Shore P, Stern RJ, El Alfy Z, Guinness EA (1992) Nature of the Red Sea crust: a controversy revisited. Geology 20:593–596

    Google Scholar 

  • Sultan M, Becker R, Arvidson RE, Shore P, Stern RJ, El Alfy Z, Attia RI (1993) New constraints on Red-Sea rifting from correlations of Arabian and Nubian Neoproterozoic outcrops. Tectonics 12:1303–1319

    Google Scholar 

  • Taylor B, Martinez F (2003) Back-arc basin basalt systematics. Earth Planet Sci Lett 210:481–497

    Google Scholar 

  • Taviani M (1998) Axial sedimentation of the Red Sea transitional region (22°–25° N): pelagic, gravity flow and sapropel deposition during the late quaternary. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics of rift basins: Red Sea—Gulf of Aden. Chapman and Hall, London, pp 467–478

    Google Scholar 

  • Telford WN, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, Cambridge, 770 pp

    Google Scholar 

  • Thybo H, Nielsen CA (2009) Magma compensated crustal thinning in continental rift zones. Nature 457:873–876

    Google Scholar 

  • Tramontini C, Davis D (1969) A seismic refraction survey in the Red Sea. Geophys J Roy Astron Soc 17:225–241

    Google Scholar 

  • Voggenreiter W, Hotzl H (1989) Kinematic evolution of the southwestern Arabian continental margin: implications for the origin of the Red Sea. J Afr Earth Sc 8:541–564

    Google Scholar 

  • Volker F, McCulloch MT (1993) Submarine basalts from the Red Sea: New Pb, Sr, and Nd isotopic data. Geophys Res Lett 20:927–930

    Google Scholar 

  • Wang K, Plank T, Walker JD, Smith EI (2002) A mantle melting profile across the Basin and Range, SW USA. J Geophys Res 107:ECV5. doi:10.1029/2001JB000209

  • Wang Y, Forsyth DW, Savage B (2009) Convective upwelling in the mantle beneath the Gulf of California. Nature 462:499–502

    Google Scholar 

  • Weaver BL (1991) The origin of ocean island end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett 104:381–397

    Google Scholar 

  • White RS, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729

    Google Scholar 

  • White RS, Smith LK, Roberts AW, Christie PAF, Kusznir NJ, The Rest of the iSIMM Team (2008) Lower-crustal intrusion on the North Atlantic continental margin. Nature 452:460–465

    Google Scholar 

  • Whitehead JA, Dick HJB, Schouten H (1984) A mechanism for magmatic accretion under spreading centres. Nature 312:146–148

    Google Scholar 

  • Whitmarsh RB, Manatschal G, Minshull TA (2001) Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature 413:150–154

    Google Scholar 

  • Wilson JT (1966) Did the Atlantic close and then re-open? Nature 211:676–681

    Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Google Scholar 

  • Wright TJ, Ebinger CJ, Biggs J, Ayele A, Yirgo G, Keir D, Stork A (2006) Magma-maintained rift segmentation at continental rupture in the 2005 Afar diking episode. Nature 442:291–294

    Google Scholar 

  • Wright T, Sigmundsson F, Ayele A, Belachew M, Brandsdottir B, Calais E, Ebinger C, Einarsson P, Hamling I, Keir D, Lewi E, Pagli C, Pedersen R (2012) Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nat Geosci 5:242–249

    Google Scholar 

Download references

Acknowledgments

This research was sponsored by the PRIN2012 Programme (Project 20125JKANY_002). The work was supported by the Saudi Geological Survey and the Italian Consiglio Nazionale Ricerche. We are grateful to D. Keir and W.U. Mohriak for their helpful and constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ligi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ligi, M., Bonatti, E., Rasul, N.M.A. (2015). Seafloor Spreading Initiation: Geophysical and Geochemical Constraints from the Thetis and Nereus Deeps, Central Red Sea. In: Rasul, N., Stewart, I. (eds) The Red Sea. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45201-1_4

Download citation

Publish with us

Policies and ethics